3D Maps Representation Using GNG
Contribuinte(s) |
Universidad de Alicante. Departamento de Ciencia de la Computación e Inteligencia Artificial Universidad de Alicante. Departamento de Tecnología Informática y Computación Universidad de Alicante. Instituto Universitario de Investigación Informática Robótica y Visión Tridimensional (RoViT) Informática Industrial y Redes de Computadores |
---|---|
Data(s) |
25/11/2014
25/11/2014
27/08/2014
|
Resumo |
Current RGB-D sensors provide a big amount of valuable information for mobile robotics tasks like 3D map reconstruction, but the storage and processing of the incremental data provided by the different sensors through time quickly become unmanageable. In this work, we focus on 3D maps representation and propose the use of the Growing Neural Gas (GNG) network as a model to represent 3D input data. GNG method is able to represent the input data with a desired amount of neurons or resolution while preserving the topology of the input space. Experiments show how GNG method yields a better input space adaptation than other state-of-the-art 3D map representation methods. This work was partially funded by the Spanish Government DPI2013-40534-R grant. |
Identificador |
Mathematical Problems in Engineering. Volume 2014 (2014), Article ID 972304, 11 pages. doi:10.1155/2014/972304 1024-123X (Print) 1563-5147 (Online) http://hdl.handle.net/10045/42641 10.1155/2014/972304 |
Idioma(s) |
eng |
Publicador |
Hindawi Publishing Corporation |
Relação |
http://dx.doi.org/10.1155/2014/972304 |
Direitos |
© 2014 Vicente Morell et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. info:eu-repo/semantics/openAccess |
Palavras-Chave | #3D maps representation #GNG #Ciencia de la Computación e Inteligencia Artificial #Arquitectura y Tecnología de Computadores |
Tipo |
info:eu-repo/semantics/article |