61 resultados para Food processing plants
em University of Queensland eSpace - Australia
Resumo:
The research was aimed at developing a technology to combine the production of useful microfungi with the treatment of wastewater from food processing. A recycle bioreactor equipped with a micro-screen was developed as a wastewater treatment system on a laboratory scale to contain a Rhizopus culture and maintain its dominance under non-aseptic conditions. Competitive growth of bacteria was observed, but this was minimised by manipulation of the solids retention time and the hydraulic retention time. Removal of about 90% of the waste organic material (as BOD) from the wastewater was achieved simultaneously. Since essentially all fungi are retained behind the 100 mum aperture screen, the solids retention time could be controlled by the rate of harvesting. The hydraulic retention time was employed to control the bacterial growth as the bacteria were washed through the screen at a short HRT. A steady state model was developed to determine these two parameters. This model predicts the effluent quality. Experimental work is still needed to determine the growth characteristics of the selected fungal species under optimum conditions (pH and temperature).
Resumo:
The similarity between the Peleg, Pilosof –Boquet–Batholomai and Singh–Kulshrestha models was investigated using the hydration behaviours of whey protein concentrate, wheat starch and whey protein isolate at 30 °C in 100% relative humidity. The three models were shown to be mathematically the same within experimental variations, and they yielded parameters that are related. The models, in their linear and original forms, were suitable (r2 > 0.98) in describing the sorption behaviours of the samples, and are sensitive to the length of the sorption segment used in the computation. The whey proteins absorbed more moisture than the wheat starch, and the isolate exhibited a higher sorptive ability than the concentrate.
Resumo:
There is public unease about food-related issues including food additives, food poisoning bacteria and GM ingredients. The public wants evidence of no risks, but all regulators can ever offer is no evidence of risk or evidence of a very small risk. The situation is complex because experts and non-experts can perceive the same risk in vastly different ways. The way in which the food industry manages crises and communicates risks will determine the public acceptance and success of new technologies such as GM foods and nanomaterials. There is a need for the food industry (including regulators and scientific experts) to sharpen up their risk communication skills to ensure that technical innovations are accepted by consumers, and crises such as food recalls do not undermine the public's confidence in the food industry. The AIFST has a key role to play in driving the risk communication process and allaying public unease about food-related issues.
Resumo:
The dairy industry is a global industry that provides significant nutritional benefit to many cultures. in australia the industry is especially important economically, being a large export earner, as well as a vital domestic sector. in recent years the sector has come under increased competitive pressure and has restructured to cope with the changes. the industry recently undertook an eco-efficiency project to investigate where business and environmental improvements might be found. the project involved collecting and collating previous project data and surveying 38 companies in different dairy operations, from market milk to dried products. after the survey, 10 sites in two states were visited to discuss eco-efficiency issues in detail with key players. From the surveys, visits and data compilation, a comprehensive manual was prepared to help interested companies find relevant eco-efficiency data easily and assist them in the implementation process. ten fact sheets were also produced covering the topics of water management, water recycling and re-use, refrigeration optimisation, boiler optimisation, biogas, the use of treated wastewater, yield optimisation and product recovery, optimisation of ciP systems, chemical use and membranes the project highlighted the large amount of technical and engineering expertise within the sector that could result in eco-efficiency outcomes and also identified the opportunities that exist for changes to occur in some operations to save energy, input raw materials and water.
Resumo:
Mineral processing plants use two main processes; these are comminution and separation. The objective of the comminution process is to break complex particles consisting of numerous minerals into smaller simpler particles where individual particles consist primarily of only one mineral. The process in which the mineral composition distribution in particles changes due to breakage is called 'liberation'. The purpose of separation is to separate particles consisting of valuable mineral from those containing nonvaluable mineral. The energy required to break particles to fine sizes is expensive, and therefore the mineral processing engineer must design the circuit so that the breakage of liberated particles is reduced in favour of breaking composite particles. In order to effectively optimize a circuit through simulation it is necessary to predict how the mineral composition distributions change due to comminution. Such a model is called a 'liberation model for comminution'. It was generally considered that such a model should incorporate information about the ore, such as the texture. However, the relationship between the feed and product particles can be estimated using a probability method, with the probability being defined as the probability that a feed particle of a particular composition and size will form a particular product particle of a particular size and composition. The model is based on maximizing the entropy of the probability subject to mass constraints and composition constraint. Not only does this methodology allow a liberation model to be developed for binary particles, but also for particles consisting of many minerals. Results from applying the model to real plant ore are presented. A laboratory ball mill was used to break particles. The results from this experiment were used to estimate the kernel which represents the relationship between parent and progeny particles. A second feed, consisting primarily of heavy particles subsampled from the main ore was then ground through the same mill. The results from the first experiment were used to predict the product of the second experiment. The agreement between the predicted results and the actual results are very good. It is therefore recommended that more extensive validation is needed to fully evaluate the substance of the method. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The textures of yogurt made from ultra-high temperature (UHT) treated and conventionally treated milks at high total solids were investigated. The yogurt premixes, fortified with low-heat skim milk powder to 16%, 18%, and 20% total solids, were UHT processed at 143 degreesC for 6 s and heated at 85 degreesC for 30 min using the conventional method. The onset of gelation was delayed in the UHT-processed milk compared with conventionally heated milk. During fermentation, the viscosity of yogurt made, from UHT-treated milk at 20% total solids was close to that of yogurt made from conventionally treated milk with 16% total solids. However, after storage for greater than or equal to1 d, the yogurt made from UHT-treated milk had lower viscosity and gel strength than the yogurt made from conventionally treated milk. The solids level had no influence on yogurt culture growth.