6 resultados para Degradation, Organic photovoltaics, Scanning probe microscopy

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The aim of this study was to examine the enamel thickness of the maxillary primary incisors of preterm children with very low birth weight (< 1,500 g) compared to full-term children with normal birth weight. Methods: A total of 90 exfoliated maxillary primary central incisors were investigated using light microscopy and scanning electron microscopy (SEM). Three serial buccolingual ground sections of each tooth were examined under light microscopy, and maximum dimensions of the prenatally and postnatally formed enamel were measured. Results: The enamel of preterm teeth was approximately 20% thinner than that for fullterm teeth. Most of the reduction was observed in the prenatally formed enamel. This was 5 to 13 times thinner than that for full-term children (P < .001). The catch-up thickness of postnatally formed enamel did not compensate fully for the decrease in prenatal enamel (P < .001). Although none of the teeth used in this study had enamel defects visible to the naked eye, 52% of preterm teeth showed enamel hypoplasia under SEM, compared with only 16% found on full-term teeth (P < .001). These defects were present as pits or irregular, shallow areas of missing enamel. Conclusions: Preterm primary dental enamel is abnormal in surface quality, and is significantly thinner compared to full-term enamel. The thinner enamel is due mainly to reduced prenatal growth and results in smaller dimensions of the primary dentition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Controlled polishing procedures were used to produce both uniformly doped and p-n junction silicon samples with different interface state densities but identical oxide thicknesses. Using these samples, the effects of interface states on scanning capacitance microscopy (SCM) measurements could be singled out. SCM measurements on the junction samples were performed with and without illumination from the atomic force microscopy laser. Both the interface charges and the illumination were seen to affect the SCM signal near p-n junctions significantly. SCM p-n junction dopant profiling can be achieved by avoiding or correctly modeling these two factors in the experiment and in the simulation. (c) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research involving starch grains recovered from archaeological contexts has highlighted the need for a review of the mechanisms and consequences of starch degradation specifically relevant to archaeology. This paper presents a review of the plant physiological and soil biochemical literature pertinent to the archaeological investigation of starch grains found as residues on artefacts and in archaeological sediments. Preservative and destructive factors affecting starch survival, including enzymes, clays, metals and soil properties, as well as differential degradation of starches of varying sizes and amylose content, were considered. The synthesis and character of chloroplast-formed 'transitory' starch grains, and the differentiation of these from 'storage' starches formed in tubers and seeds were also addressed. Findings of the review include the higher susceptibility of small starch grains to biotic degradation, and that protective mechanisms are provided to starch by both soil aggregates and artefact surfaces. These findings suggest that current reasoning which equates higher numbers of starch grains on an artefact than in associated sediments with the use of the artefact for processing starchy plants needs to be reconsidered. It is argued that an increased understanding of starch decomposition processes is necessary to accurately reconstruct both archaeological activities involving starchy plants and environmental change investigated through starch analysis. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scanning capacitance microscopy (SCM) measurement is a proposed tool for dopant profile extraction for semiconductor material. The influence of interface traps on SCM dC/dV data is still unclear. In this paper we report on the simulation work used to study the nature of SCM dC/dV data in the presence of interface traps. A technique to correctly simulate dC/dV of SCM measurement is then presented based on our justification. We also analyze how charge of interface traps surrounding SCM probe would affect SCM dC/dV due the small SCM probe dimension.