187 resultados para Depression Severity Transition Probability Matrix
Resumo:
We consider algorithms for computing the Smith normal form of integer matrices. A variety of different strategies have been proposed, primarily aimed at avoiding the major obstacle that occurs in such computations-explosive growth in size of intermediate entries. We present a new algorithm with excellent performance. We investigate the complexity of such computations, indicating relationships with NP-complete problems. We also describe new heuristics which perform well in practice. Wie present experimental evidence which shows our algorithm outperforming previous methods. (C) 1997 Academic Press Limited.
Resumo:
We suggest a new notion of behaviour preserving transition refinement based on partial order semantics. This notion is called transition refinement. We introduced transition refinement for elementary (low-level) Petri Nets earlier. For modelling and verifying complex distributed algorithms, high-level (Algebraic) Petri nets are usually used. In this paper, we define transition refinement for Algebraic Petri Nets. This notion is more powerful than transition refinement for elementary Petri nets because it corresponds to the simultaneous refinement of several transitions in an elementary Petri net. Transition refinement is particularly suitable for refinement steps that increase the degree of distribution of an algorithm, e.g. when synchronous communication is replaced by asynchronous message passing. We study how to prove that a replacement of a transition is a transition refinement.