35 resultados para Nonlinear integral equations.
Resumo:
Let {a(1), a(2), ..., a(n)} be a set of n distinct real numbers and let alpha(1), alpha(2), ..., alpha(n) an be a permutation of the numbers. We construct the permutation to maximise L-f = Sigma(i=1)(n) f(\alpha(i+1) - alpha(i)\), for any increasing concave function f, where we denote alpha(n+1) equivalent to alpha(1). The optimal permutation depends on the particular numbers {a(1), a(2), ..., a(n)} and the function f, contrary to a postulate by Chao and Liang (European J. Combin. 13 (1992) 325). (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This work formulates existence theorems for solutions to two-point boundary value problems on time scales. The methods used include maximum principles, a priori bounds and topological degree theory.
Resumo:
Let f : [0, 1] x R2 -> R be a function satisfying the Caxatheodory conditions and t(1 - t)e(t) epsilon L-1 (0, 1). Let a(i) epsilon R and xi(i) (0, 1) for i = 1,..., m - 2 where 0 < xi(1) < xi(2) < (...) < xi(m-2) < 1 - In this paper we study the existence of C[0, 1] solutions for the m-point boundary value problem [GRAPHICS] The proof of our main result is based on the Leray-Schauder continuation theorem.
Resumo:
We prove a removable singularity theorem for p-harmonic maps in the subquadratic case. The theorem states that an isolated singularity of a weakly p-harmonic map is removable if the energy is sufficiently small in a neighbourhood of the singularity.
Resumo:
In this paper we study the following p(x)-Laplacian problem: -div(a(x)&VERBAR;&DEL; u&VERBAR;(p(x)-2)&DEL; u)+b(x)&VERBAR; u&VERBAR;(p(x)-2)u = f(x, u), x ε &UOmega;, u = 0, on &PARTIAL; &UOmega;, where 1< p(1) &LE; p(x) &LE; p(2) < n, &UOmega; &SUB; R-n is a bounded domain and applying the mountain pass theorem we obtain the existence of solutions in W-0(1,p(x)) for the p(x)-Laplacian problems in the superlinear and sublinear cases. © 2004 Elsevier Inc. All rights reserved.
Resumo:
We develop results for bifurcation from the principal eigenvalue for certain operators based on the p-Laplacian and containing a superlinear nonlinearity with a critical Sobolev exponent. The main result concerns an asymptotic estimate of the rate at which the solution branch departs from the eigenspace. The method can also be applied for nonpotential operators.
Resumo:
We consider the semilinear Schrodinger equation -Delta(A)u + V(x)u = Q(x)vertical bar u vertical bar(2* -2) u. Assuming that V changes sign, we establish the existence of a solution u not equal 0 in the Sobolev space H-A,V(1) + (R-N). The solution is obtained by a min-max type argument based on a topological linking. We also establish certain regularity properties of solutions for a rather general class of equations involving the operator -Delta(A).
Resumo:
We consider the solvability of the Neumann problem for the equation -Delta u + lambda u = 0, partial derivative u/partial derivative v = Q(x)vertical bar u vertical bar(q-2)u on partial derivative Omega, where Q is a positive and continuous coefficient on partial derivative Omega, lambda is a parameter and q = 2(N - 1)/(N - 2) is a critical Sobolev exponent for the trace embedding of H-1(Omega) into L-q(partial derivative Omega). We investigate the joint effect of the mean curvature of partial derivative Omega and the shape of the graph of Q on the existence of solutions. As a by product we establish a sharp Sobolev inequality for the trace embedding. In Section 6 we establish the existence of solutions when a parameter lambda interferes with the spectrum of -Delta with the Neumann boundary conditions. We apply a min-max principle based on the topological linking.
Resumo:
In this paper we consider the exterior Neumann problem involving a critical Sobolev exponent. We establish the existence of two solutions having a prescribed limit at infinity.