On the Schrodinger equation involving a critical Sobolev exponent and magnetic field
Data(s) |
01/03/2005
|
---|---|
Resumo |
We consider the semilinear Schrodinger equation -Delta(A)u + V(x)u = Q(x)vertical bar u vertical bar(2* -2) u. Assuming that V changes sign, we establish the existence of a solution u not equal 0 in the Sobolev space H-A,V(1) + (R-N). The solution is obtained by a min-max type argument based on a topological linking. We also establish certain regularity properties of solutions for a rather general class of equations involving the operator -Delta(A). |
Identificador | |
Idioma(s) |
eng |
Publicador |
Wydawnictwo Naukowe Uniwersytetu Mikolaja Kopernika (The Nicolaus Copernicus University) |
Palavras-Chave | #Mathematics #Semilinear Schrodinger Equation #Critical Sobolev Exponent #Magnetic Field #Linking #Semilinear Elliptic Equation #C1 #230107 Differential, Difference and Integral Equations #780101 Mathematical sciences #0101 Pure Mathematics |
Tipo |
Journal Article |