Existence of solutions for p(x)-Laplacian problems on a bounded domain


Autoria(s): Chabrowski, J; Fu, YQ
Contribuinte(s)

S G Krantz

W F Ames

Data(s)

01/01/2005

Resumo

In this paper we study the following p(x)-Laplacian problem: -div(a(x)&VERBAR;&DEL; u&VERBAR;(p(x)-2)&DEL; u)+b(x)&VERBAR; u&VERBAR;(p(x)-2)u = f(x, u), x ε &UOmega;, u = 0, on &PARTIAL; &UOmega;, where 1< p(1) &LE; p(x) &LE; p(2) < n, &UOmega; &SUB; R-n is a bounded domain and applying the mountain pass theorem we obtain the existence of solutions in W-0(1,p(x)) for the p(x)-Laplacian problems in the superlinear and sublinear cases. © 2004 Elsevier Inc. All rights reserved.

Identificador

http://espace.library.uq.edu.au/view/UQ:77036

Idioma(s)

eng

Publicador

Elsevier

Palavras-Chave #Mathematics, Applied #Mathematics #Existence #P(x)-laplacian Problem #Bounded Domain #Nonstandard Growth #Sobolev Embeddings #Laplace Equations #Variable Exponent #Holder Continuity #Functionals #C1 #230107 Differential, Difference and Integral Equations #780101 Mathematical sciences
Tipo

Journal Article