Existence of solutions for p(x)-Laplacian problems on a bounded domain
Contribuinte(s) |
S G Krantz W F Ames |
---|---|
Data(s) |
01/01/2005
|
Resumo |
In this paper we study the following p(x)-Laplacian problem: -div(a(x)&VERBAR;&DEL; u&VERBAR;(p(x)-2)&DEL; u)+b(x)&VERBAR; u&VERBAR;(p(x)-2)u = f(x, u), x ε &UOmega;, u = 0, on &PARTIAL; &UOmega;, where 1< p(1) &LE; p(x) &LE; p(2) < n, &UOmega; &SUB; R-n is a bounded domain and applying the mountain pass theorem we obtain the existence of solutions in W-0(1,p(x)) for the p(x)-Laplacian problems in the superlinear and sublinear cases. © 2004 Elsevier Inc. All rights reserved. |
Identificador | |
Idioma(s) |
eng |
Publicador |
Elsevier |
Palavras-Chave | #Mathematics, Applied #Mathematics #Existence #P(x)-laplacian Problem #Bounded Domain #Nonstandard Growth #Sobolev Embeddings #Laplace Equations #Variable Exponent #Holder Continuity #Functionals #C1 #230107 Differential, Difference and Integral Equations #780101 Mathematical sciences |
Tipo |
Journal Article |