Extremal circular permutations with concave functions


Autoria(s): Tonkes, E.
Data(s)

01/10/2004

Resumo

Let {a(1), a(2), ..., a(n)} be a set of n distinct real numbers and let alpha(1), alpha(2), ..., alpha(n) an be a permutation of the numbers. We construct the permutation to maximise L-f = Sigma(i=1)(n) f(\alpha(i+1) - alpha(i)\), for any increasing concave function f, where we denote alpha(n+1) equivalent to alpha(1). The optimal permutation depends on the particular numbers {a(1), a(2), ..., a(n)} and the function f, contrary to a postulate by Chao and Liang (European J. Combin. 13 (1992) 325). (C) 2004 Elsevier Ltd. All rights reserved.

Identificador

http://espace.library.uq.edu.au/view/UQ:71522

Idioma(s)

eng

Publicador

Academic Press

Palavras-Chave #Mathematics #Concave functons #C1 #230107 Differential, Difference and Integral Equations #780101 Mathematical sciences #0101 Pure Mathematics
Tipo

Journal Article