14 resultados para model reference adaptive control systems
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
A finite element formulation for active vibration control of thin plate laminated structures with integrated piezoelectric layers, acting as sensors and actuators in presented. The finite element model is a nonconforming single layer triangular plate/shell element with 18 degrees of freedom for the generalized displacements and one electrical potential degree of freedom for each piezoelectric element layer, and is based on the kirchhoff classical laminated theory. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorithm is used, coupling the sensor and active piezoelectric layers, and Newmark method is used to calculate yhe dynamic response of the laminated structures. The model is applied in the solution of several illustrative cases, and the results are presented and discussed.
Resumo:
The IFAC International Conference on Intelligent Control Systems and Signal Processing (ICONS 2003) was organized under the auspices of the recently founded IFAC Technical Committee on Cognition and Control, and it was the first IFAC event specifically devoted to this theme. Recognizing the importance of soft-computing techniques for fields covered by other IFAC Technical Committees, ICONS 2003 was a multi-track Conference, co-sponsored by four additional Technical Committees: Computers for Control, Optimal Control, Control in Agriculture, and Modelling, Identification and Signal Processing. The Portuguese Society for Automatic Control (APCA) hosted ICONS 2003, which was held at the University of Algarve, Faro, Portugal.
Resumo:
Multilayer perceptrons (MLPs) (1) are the most common artificial neural networks employed in a large field of applications. In control and signal processing applications, MLPs are mainly used as nonlinear mapping approximators. The most common training algorithm used with MLPs is the error back-propagation (BP) alg. (1).
Resumo:
Novel method of controller (PID) autotuning, involving neural networks and genetic algorithms: to employ neural networks to map the identification measures and controller parameters to objective functions, adapt these models on-line; to employ the genetic algorithm to perform on-line minimization.
Resumo:
In this paper a parallel implementation of an Adaprtive Generalized Predictive Control (AGPC) algorithm is presented. Since the AGPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.
Resumo:
In the field of control systems it is common to use techniques based on model adaptation to carry out control for plants for which mathematical analysis may be intricate. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this line, this paper gives a perspective on the quality of results given by two different biologically connected learning algorithms for the design of B-spline neural networks (BNN) and fuzzy systems (FS). One approach used is the Genetic Programming (GP) for BNN design and the other is the Bacterial Evolutionary Algorithm (BEA) applied for fuzzy rule extraction. Also, the facility to incorporate a multi-objective approach to the GP algorithm is outlined, enabling the designer to obtain models more adequate for their intended use.
Resumo:
The aim of this chapter is to introduce background concepts in nonlinear systems identification and control with artificial neural networks. As this chapter is just an overview, with a limited page space, only the basic ideas will be explained here. The reader is encouraged, for a more detailed explanation of a specific topic of interest, to consult the references given throughout the text. Additionally, as general books in the field of neural networks, the books by Haykin [1] and Principe et al. [2] are suggested. Regarding nonlinear systems identification, covering both classical and neural and neuro-fuzzy methodologies, Reference 3 is recommended. References 4 and 5 should be used in the context of B-spline networks.
Resumo:
In this paper a parallel implementation of an Adaprtive Generalized Predictive Control (AGPC) algorithm is presented. Since the AGPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.
Resumo:
A real-time parameter estimator for the climate discrete-time dynamic models of a greenhouse located at the North of Portugal are presented. The experiments showed that the second order models identified for the air temperature and humidity achieve a close agreement between simulated and experimantal data.
Resumo:
This talk addresses the problem of controlling a heating ventilating and air conditioning system with the purpose of achieving a desired thermal comfort level and energy savings. The formulation uses the thermal comfort, assessed using the predicted mean vote (PMV) index, as a restriction and minimises the energy spent to comply with it. This results in the maintenance of thermal comfort and on the minimisation of energy, which in most operating conditions are conflicting goals requiring some sort of optimisation method to find appropriate solutions over time. In this work a discrete model based predictive control methodology is applied to the problem. It consists of three major components: the predictive models, implemented by radial basis function neural networks identifed by means of a multi-objective genetic algorithm [1]; the cost function that will be optimised to minimise energy consumption and provide adequate thermal comfort; and finally the optimisation method, in this case a discrete branch and bound approach. Each component will be described, with a special emphasis on a fast and accurate computation of the PMV indices [2]. Experimental results obtained within different rooms in a building of the University of Algarve will be presented, both in summer [3] and winter [4] conditions, demonstrating the feasibility and performance of the approach. Energy savings resulting from the application of the method are estimated to be greater than 50%.
Resumo:
One of the aspects of modern agriculture is characterised by a culture without soil (hydroponic cultures). These culture techniques are identified by possessing automatic control systems to control the nutrient solution. In first hydroponic cultures this control was accomplished by “on- off” analog controllers that applied a single control law implemented in hardware. Therefore, the changes of the control law resulted in the change of all interface electronics. In digital control implemented by micro-controllers the alteration of such control law is easily performed by changing only a computer program, leaving untouched all the interface hardware. In this way, the use and substitution of the control strategy is improved, as well, the use of advanced control strategies.
Resumo:
SYSID is organized every three years. This will be the first SYSID symposium in the 3rd millenium and the second SYSID symposium to take place in The Netherlands. The symposium covers all major aspects of system identification, experimental modelling, signal processing and adaptive control from theoretical and methodological developments to practical applications in a wide range of application areas. The aim of the meeting is to promote the research activities and the cooperation between researchers in these areas. To enhance the applications and industrial perspective of the symposium, participation from industrial authors is particularly encouraged. This will be the first Council meeting after the World Congress in Barcelona last year. The year that has passed has been very active indeed. Following the restructuring of the Technical Board which was endorsed in Barcelona, the 39 Technical Committees within the Technical Board have taken up their work and, after a year, we may say that work is proceeding very smoothly and a lot of activities are going on which will be reported on in greater detail after the meeting of the Technical Board in Rotterdam. The scopes of all these 39 Technical Committees have been revised and were published in Issue 1, 2003 of the IFAC Newsletter, which was published on the web. Shortly a document for download with all the scopes will be available on the web.
Resumo:
The introduction of parallel processing architectures allowed the real time impelemtation of more sophisticated control algorithms with tighter specifications in terms of sampling time. However, to take advantage of the processing power of these architectures the control engeneer, due to the lack of appropriate tools, must spend a considerable amount of time in the parallelizaton of the control algorithm.
Resumo:
This papers describes an extantion of previous works on the subject of neural network proportional, integral and derivative (PID) autotuning. Basically, neural networks are employed to supply the three PID parameters, according to the integral of time multiplied by the absolute error (ITAE) criterion, to a standard PID controller.