15 resultados para Matriz extracelular hepatica

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação de mest. em Biotecnologia, Faculdade de Engenharia de Recursos Naturais, Univ. do Algarve, 2004

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese dout., Biologia, Universidade do Algarve, 2005

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de Mestrado, Biologia Marinha, Especialização em Biotecnologia Marinha, Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, 2008

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The vertebral column and its units, the vertebrae, are fundamental features, characteristic of all vertebrates. Developmental segregation of the vertebral bodies as articulated units is an intrinsic requirement to guarantee the proper function of the spine. Whenever these units become fused either during development or postsegmentation, movement is affected in a more or less severe manner, depending on the number of vertebrae affected. Nevertheless, fusion may occur as part of regular development and as a physiological requirement, like in the tetrapod sacrum or in fish posterior vertebrae forming the urostyle. In order to meet the main objective of this PhD project, which aimed to better understand the molecular and cellular events underlying vertebral fusion under physiological and pathological conditions, a detailed characterization of the vertebral fusion occurring in zebrafish caudal fin region was conducted. This showed that fusion in the caudal fin region comprised 5 vertebral bodies, from which, only fusion between [PU1++U1] and ural2 [U2+] was still traceable during development. This involved bone deposition around the notochord sheath while fusion within the remaining vertebral bodies occur at the level of the notochord sheath, as during the early establishment of the vertebral bodies. A comparison approach between the caudal fin vertebrae and the remaining vertebral column showed conserved features such as the presence of mineralization related proteins as Osteocalcin were identified throughout the vertebral column, independently on the mineralization patterns. This unexpected presence of Osteocalcin in notochord sheath, here identified as Oc1, suggested that this gene, opposing to Oc2, generally associated with bone formation and mature osteoblast activity, is potentially associated with early mineralization events including chordacentrum formation. Nevertheless, major differences between caudal fin region and anterior vertebral bodies considering arch histology and mineralization patterns, led us to use RA as an inductive factor for vertebral fusion, allowing a direct comparison of equivalent structures under normal and fusion events. This fusion phenotype was associated with notochord sheath ectopic mineralization instead of ectopic perichordal bone formation related with increased osteoblast activity, as suggested in previous reports. Additionally, alterations in ECM content, cell adhesion and blood coagulation were discussed as potentially related with the fusion phenotype. Finally, Matrix gla protein, upregulated upon RA treatment and shown to be associated with chordacentrum mineralization sites in regular development, was further described considering its potential function in vertebral formation and pathological fusion. Therefore with this work we propose zebrafish caudal fin vertebral fusion as a potential model to study both congenital and postsegmentation fusion and we present candidate factors and genes that may be further explored in order to clarify whether we can prevent vertebral fusion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gilthead seabream is the most important farmed species in the Mediterranean, and knowledge on how common farming practices impact its quality is limited. As such, this Thesis aimed to evaluate how gilthead seabream flesh quality is affected by some of these practices. In Chapter 2, the influence of nutritional factors was evaluated, specifically the high replacement of traditional marine-derived ingredients, both fishmeal and fish oil, with vegetable sources. We have seen that the vegetable-based diets tested did not greatly impact seabream flesh quality, although some alterations were seen in the fatty acid profile of the muscle. However, and despite having caused no alterations in flesh texture, vegetable ingredients reduced the amount of sulphated glycosaminoglycans in the extracellular matrix, affected muscle pH and reduced the activity of proteolytic enzymes. Throughout this Thesis, we measured for the first time the activity of proteolytic enzymes in seabream muscle, and cathepsin B was found to play a pivotal role in post-mortem muscle degradation. In Chapter 3, we evaluated the effect of harvesting and slaughter stress on seabream quality, and contrary to what is seen in most farmed species, our results show that gilthead seabream muscle structure is highly resistant to changes caused by stressful events. Nonetheless, considering that welfare is an increasingly important quality criterion, the use of a zero-withdrawal anaesthetic as a rested harvest technique or even slaughter method could prove valuable to the industry. In Chapter 4, we used maslinic acid as a dietary supplement, to modulate the muscle’s energetic status pre-mortem. As a finishing strategy, maslinic acid failed to increase levels of glycogen and ATP in the muscle. However, supplementation resulted in higher muscle fibre diameter and lower cathepsin B activity, and maslinic acid is likely to be useful to promote growth in this species. In general our Thesis has generated new knowledge to a major challenge facing the aquaculture industry, which is to find a compromise between the trends towards intensive rearing and consumer demand for healthy, high quality seafood being ethically acceptable and having a low impact on the environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bone morphogenetic proteins (BMPs) are multifunctional growth factors belonging to the transforming growth factor β (TGFβ) superfamily with a central role in bone formation and mineralization. BMP2, a founding member of this family, has demonstrated remarkable osteogenic properties and is clinically used to promote bone repair and fracture healing. Lack of basic data on factors regulating BMP2 expression and activity have hampered a better understanding of its role in bone formation and bone-related diseases. The objective of this work was to collect new functional data and determine spatiotemporal expression patterns in a fish system aiming towards a better understanding of BMP2 function and regulation. Transcriptional and post-transcriptional regulation of gilthead seabream BMP2 gene was inferred from luciferase reporter systems. Several bone- and cartilage-related transcription factors (e.g. RUNX3, MEF2c, SOX9 and ETS1) were found to regulate BMP2 transcription, while microRNA 20a was shown to affect stability of the BMP2 transcript and thus the mineralogenic capacity of fish bone-derived host cells. The regulation of BMP2 activity through an interaction with the matrix Gla protein (MGP) was investigated in vitro using BMP responsive elements (BRE) coupled to luciferase reporter gene. Although we demonstrated the functionality of the experimental system in a fish cell line and the activation of BMP signaling pathway by seabream BMP2, no conclusive evidence could be collected on a possible interaction beween MGP and BMP2. The evolutionary relationship among the members of BMP2/4/16 subfamily was inferred from taxonomic and phylogenetic analyses. BMP16 diverged prior to BMP2 and BMP4 and should be the result of an ancient genome duplication that occurred early in vertebrate evolution. Structural and functional data suggested that all three proteins are effectors of the BMP signaling pathway, but expression data revealed different spatiotemporal patterns in teleost fish suggesting distinct mechanisms of regulation. In this work, through the collection of novel data, we provide additional insight into the regulation, the structure and the phylogenetic relationship of BMP2 and its closely related family members.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The identification of genes involved in signaling and regulatory pathways, and matrix formation is paramount to the better understanding of the complex mechanisms of bone formation and mineralization, and critical to the successful development of therapies for human skeletal disorders. To achieve this objective, in vitro cell systems derived from skeletal tissues and able to mineralize their extracellular matrix have been used to identify genes differentially expressed during mineralization and possibly new markers of bone and cartilage homeostasis. Using cell systems of fish origin and techniques such as suppression subtractive hybridization and microarray hybridization, three genes never associated with mechanisms of calcification were identified: the calcium binding protein S100-like, the short-chain dehydrogenase/reductase sdr-like and the betaine homocysteine S-methyltransferase bhmt3. Analysis of the spatial-temporal expression of these 3 genes by qPCR and in situ hybridization revealed: (1) the up-regulation of sdr-like transcript during in vitro mineralization of gilthead seabream cell lines and its specificity for calcified tissues and differentiating osteoblasts; (2) the up-regulation of S100-like and the down-regulation of bhmt3 during in vitro mineralization and the central role of both genes in cartilaginous tissues undergoing endo/perichondral mineralization in juvenile fish. While expression of S100-like and bhmt3 was restricted to calcified tissues, sdr-like transcript was also detected in soft tissues, in particular in tissues of the gastrointestinal tract. Functional analysis of gene promoters revealed the transcriptional regulation of the 3 genes by known regulators of osteoblast and chondrocyte differentiation/mineralization: RUNX2 and RAR (sdr-like), ETS1 (s100-like; bhmt3), SP1 and MEF2c (bhmt3). The evolutionary relationship of the different orthologs and paralogs identified within the scope of this work was also inferred from taxonomic and phylogenetic analyses and revealed novel protein subfamilies (S100-like and Sdr-like) and the explosive diversity of Bhmt family in particular fish groups (Neoteleostei). Altogether our results contribute with new data on SDR, S100 and BHMT proteins, evidencing for the first time the role for these three proteins in mechanisms of mineralization in fish and emphasized their potential as markers of mineralizing cartilage and bone in developing fish.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de Mestrado, Engenharia Biológica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado, Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de Mestrado, Biologia Molecular e Microbiana, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese de dout. em Química, Faculdade de Ciências do Mar e do Ambiente, Univ. do Algarve, 2002

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de Mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2016

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de Mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mest., História da Arte, Faculdade de Ciências Humanas e Sociais, Univ. do Algarve, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado, Psicologia Social e das Organizações, Faculdade de Economia, Universidade do Algarve, 2015