30 resultados para triode-MOSFET circuits
Resumo:
The present paper proposes for the first time, a novel design methodology based on the optimization of source/drain extension (SDE) regions to significantly improve the trade-off between intrinsic voltage gain (A(vo)) and cut-off frequency (f(T)) in nanoscale double gate (DG) devices. Our results show that an optimally designed 25 nm gate length SDE region engineered DG MOSFET operating at drain current of 10 mu A/mu m, exhibits up to 65% improvement in intrinsic voltage gain and 85% in cut-off frequency over devices designed with abrupt SIDE regions. The influence of spacer width, lateral source/drain doping gradient and symmetric as well as asymmetrically designed SDE regions on key analog figures of merit (FOM) such as transconductance (g(m)), transconductance-to-current ratio (g(m)/I-ds), Early voltage (V-EA), output conductance (g(ds)) and gate capacitances are examined in detail. The present work provides new opportunities for realizing future low-voltage/low-power analog circuits with nanoscale SDE engineered DG MOSFETs. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work presents a systematic analysis on the impact of source-drain engineering using gate
Resumo:
As a potential alternative to CMOS technology, QCA provides an interesting paradigm in both communication and computation. However, QCAs unique four-phase clocking scheme and timing constraints present serious timing issues for interconnection and feedback. In this work, a cut-set retiming design procedure is proposed to resolve these QCA timing issues. The proposed design procedure can accommodate QCAs unique characteristics by performing delay-transfer and time-scaling to reallocate the existing delays so as to achieve efficient clocking zone assignment. Cut-set retiming makes it possible to effectively design relatively complex QCA circuits that include feedback. It utilizes the similar characteristics of synchronization, deep pipelines and local interconnections common to both QCA and systolic architectures. As a case study, a systolic Montgomery modular multiplier is designed to illustrate the procedure. Furthermore, a nonsystolic architecture, an S27 benchmark circuit, is designed and compared with previous designs. The comparison shows that the cut-set retiming method achieves a more efficient design, with a reduction of 22%, 44%, and 46% in terms of cell count, area, and latency, respectively.