99 resultados para solid phase catalysis
Resumo:
Solid-phase oligonucleotide conjugation by nitrile oxide-alkyne click cycloaddition chemistry has been successfully demonstrated; the reaction, compatible with all nucleobases, requires no metal catalyst and proceeds under physiological conditions.
Resumo:
This article describes the development of the first ion pair solid phase extraction technique (IPSPE), which has been applied to the extraction of metformin from plasma samples. In addition an ion pair chromatographic method was developed for the specific HPLC determination of metformin. Several extraction and HPLC methods have been described previously for metformin, however, most of them did not solve the problems associated with the high polarity of this drug. Drug recovery in the developed method was found to be more than 98%. The limit of detection and limit of quantification was 3 and 5 ng/ml, respectively. The intraday and interday precision (measured by coefficient of variation, CV%) was always less than 9%. The accuracy (measured by relative error, R.E.%) was always less than 6.9%. Stability analysis showed that metformin is stable for at least 3 months when stored at -70degreesC. The method has been applied to 150 patient samples as part of a medication adherence study. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A novel phosphoramidite, N,N-diisopropylamino-2-cyanoethyl-9-anthracenemethyl phosphoramidite 1, was prepared and coupled with the terminal 5'-hydroxyl of support-bound T10 and the putative phosphite triester intermediate was subsequently reacted with iodine in the presence of either water or a series of primary and secondary amines. The reactivity of 1 compared to a previously reported benzyl phosphoramidite 2 was also investigated: oxidation of the product of coupling 2 with CPG-T10-5'OH under aqueous conditions resulted in greater than 30% of the benzyl moiety being retained. In contrast, essentially complete loss of the 9-anthracenemethyl group was observed using 1 under the same conditions. Oligonucleotides modified with a terminal phosphate monoester, lipophilic, fluorescent or cationic groups were thus prepared.
Resumo:
In this study, we report on a novel, expedited solid-phase approach for the synthesis of biotinylated and fluorescently tagged irreversible affinity based probes for the chymotrypsin and elastase-like serine proteases. The novel solid-phase biotinylation or fluorescent labeling of the aminoalkane diphenyl phosphonate warhead using commercially available Biotin-PEG-NovaTag or EDANS NovaTag resin permits rapid, facile synthesis of these reagents. We demonstrate the kinetic evaluation and utilization of a number of these irreversible inactivators for chymotrypsin-like (chymotrypsin/human cathepsin G) and elastase-like serine proteases. Encouragingly, these compounds display comparable potency against their target proteases as their N-benzyloxycarbonyl (Cbz)-protected parent compounds, from which they were derived, and function as efficient active site-directed inactivators of their target proteases. We subsequently applied the biotinylated reagents for the sensitive detection of protease species via Western blot, showing that the inactivation of the protease was specifically mediated through the active site serine. Furthermore, we also demonstrate the successful detection of serine protease species with the fluorescently labeled derivatives “in-gel”, thus avoiding the need for downstream Western blotting. Finally, we also show the utility of biotinylated and pegylated affinity probes for the isolation/enrichment of serine protease species, via capture with immobilized streptavidin, and their subsequent identification via de novo sequencing. Given their selectivity of action against the serine proteases, we believe that these reagents can be exploited for the direct, rapid, and selective identification of these enzymes from biological milieu containing multiple protease subclasses.