53 resultados para INSTABILITIES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of the external circuit on plasma instabilities in all inductive plasma source are investigated. The instabilities are found to be asymmetric with respect to the circuit input impedance. A simplified model of the antenna-plasnia coupling provides an explanation of the asymetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear coupling between the Alfven-Rao (AR) and dust-Alfven (DA) modes in a uniform magnetized dusty plasma is considered. For this purpose, multi- fluid equations (composed of the continuity and momentum equations), the laws of Faraday and Ampere and the quasi-neutrality condition are adopted to derive a set of equations, which show how the fields of the modes are nonlinearly coupled. The equations are then used to investigate decay and modulational instabilities in magnetized dusty plasmas. Stationary nonlinear solutions of the coupled AR and DA equations are presented. The relevance of the investigation to nonlinear phenomena (instabilities and localized structures) in interstellar molecular clouds is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The -phonons of KH2PO4 (KDP) and its deuterated analog DKDP are studied via first-principles linear response calculations. The paraelectric phase shows two instabilities. One for a z-polarized mode, which leads to the spontaneous polarization Ps of the ferroelectric phase. The other corresponds to a two-fold degenerate xy-polarized mode. Other phonons are analyzed, which couple to the ferroelectric one at large amplitudes and are relevant for the ferroelectric transition. We show that Ps is mainly of electronic nature, since it arises mostly from an off-diagonal component of the Born effective charge tensor of H, with minor contribution from P atoms displacements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive and employ a semiclassical Langevin equation obtained from path integrals to describe the ionic dynamics of a molecular junction in the presence of electrical current. The electronic environment serves as an effective nonequilibrium bath. The bath results in random forces describing Joule heating, current-induced forces including the nonconservative wind force, dissipative frictional forces, and an effective Lorentz-type force due to the Berry phase of the nonequilibrium electrons. Using a generic two-level molecular model, we highlight the importance of both current-induced forces and Joule heating for the stability of the system. We compare the impact of the different forces, and the wide-band approximation for the electronic structure on our result. We examine the current-induced instabilities (excitation of runaway "waterwheel" modes) and investigate the signature of these in the Raman signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of genetic algorithms (GAs) for structural optimisation is well established but little work has been reported on the inclusion of damage variables within an optimisation framework. This approach is particularly useful in the optimisation of composite structures which are prone to delamination damage. In this paper a challenging design problem is presented where the objective was to delay the catastrophic failure of a postbuckling secondary-bonded stiffened composite panel susceptible to secondary instabilities. It has been conjectured for some time that the sudden energy release associated with secondary instabilities may initiate structural failure, but this has proved difficult to observe experimentally. The optimisation methodology confirmed this indirectly by evolving a panel displaying a delayed secondary instability whilst meeting all other design requirements. This has important implication in the design of thin-skinned lightweight aerostructures which may exhibit this phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous studies have shown that postbuckling stiffened panels may undergo abrupt changes in buckled mode
shape when loaded in uniaxial compression. This phenomenon is often referred to as a mode jump or secondary
instability. The resulting sudden release of stored energy may initiate damage in vulnerable regions within a
structure, for example, at the skin-stiffener interface of a stiffened composite panel. Current design practice is to
remove a mode jump by increasing the skin thickness of the postbuckling region. A layup optimization methodology,
based on a genetic algorithm, is presented, which delays the onset of secondary instabilities in a composite structure
while maintaining a constant weight and subject to a number of design constraints. A finite element model was
developed of a stiffened panel’s skin bay, which exhibited secondary instabilities. An automated numerical routine
extracted information directly from the finite element displacement results to detect the onset of initial buckling and
secondary instabilities. This routine was linked to the genetic algorithm to find a revised layup for the skin bay, within
appropriate design constraints, to delay the onset of secondary instabilities. The layup optimization methodology,
resulted in a panel that had a higher buckling load, prebuckling stiffness, and secondary instability load than the
baseline design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of experimental studies have shown that postbuckling stiffened composite panels, loaded in uniaxial compression, may undergo secondary instabilities, characterised by an abrupt change in the buckled mode-shape of the skin between the supporting stiffeners. In this study high-speed digital speckle photogrammetry is used to gain further insight into an I-stiffened panel's response during this transient phase. This energy-dissipating phenomenon will be shown to be able to cause catastrophic structural failure in vulnerable structures. It is therefore imperative that an accurate and reliable methodology is available to predict this phenomenon. The shortcomings of current non-linear implicit solution schemes, found in most commercially-available finite element codes, are discussed. A robust and efficient strategy, which utilises an automated quasi-, static/pseudo-transient hybrid scheme, is presented in this paper and validated using a number of experimental tests. This approach is shown to be able to predict mode-jumping with good accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental and numerical studies have shown that the occurrence of abrupt secondary instabilities, or mode-jumps, in a postbuckling stiffened composite panel may initiate structural failure. This study presents an optimisation methodology, using a genetic algorithm and finite element analysis for the lay-up optimisation of postbuckling composite plates to delay the onset of mode-jump instabilities. A simple and novel approach for detecting modejumps is proposed, based on the RMS value of out-of-plane pseudo-velocities at a number of locations distributed over the postbuckling structure