16 resultados para DECOUPLED BANDS
Resumo:
A new three-limb, six-degree-of-freedom (DOF) parallel manipulator (PM), termed a selectively actuated PM (SA-PM), is proposed. The end-effector of the manipulator can produce 3-DOF spherical motion, 3-DOF translation, 3-DOF hybrid motion, or complete 6-DOF spatial motion, depending on the types of the actuation (rotary or linear) chosen for the actuators. The manipulator architecture completely decouples translation and rotation of the end-effector for individual control. The structure synthesis of SA-PM is achieved using the line geometry. Singularity analysis shows that the SA-PM is an isotropic translation PM when all the actuators are in linear mode. Because of the decoupled motion structure, a decomposition method is applied for both the displacement analysis and dimension optimization. With the index of maximal workspace satisfying given global conditioning requirements, the geometrical parameters are optimized. As a result, the translational workspace is a cube, and the orientation workspace is nearly unlimited.
Resumo:
From perspective of structure synthesis, certain special geometric constraints, such as joint axes intersecting at one point or perpendicular to each other, are necessary in realizing the end-effector motion of kinematically decoupled parallel manipulators (PMs) along individual motion axes. These requirements are difficult to achieve in the actual system due to assembly errors and manufacturing tolerances. Those errors that violate the geometric constraint requirements are termed “constraint errors”. The constraint errors usually are more troublesome than other manipulator errors because the decoupled motion characteristics of the manipulator may no longer exist and the decoupled kinematic models will be rendered useless due to these constraint errors. Therefore, identification and prevention of these constraint errors in initial design and manufacturing stage are of great significance. In this article, three basic types of constraint errors are identified, and an approach to evaluate the effects of constraint errors on decoupling characteristics of PMs is proposed. This approach is illustrated by a 6-DOF PM with decoupled translation and rotation. The results show that the proposed evaluation method is effective to guide design and assembly.
Resumo:
This paper proposes a decoupled fault ride-through strategy for a doubly fed induction generator (DFIG) to enhance network stability during grid disturbances. The decoupled operation proposes that a DFIG operates as an induction generator (IG) with the converter unit acting as a reactive power source during a fault condition. The transition power characteristics of the DFIG have been analyzed to derive the capability of the proposed strategy under various system conditions. The optimal crowbar resistance is obtained to exploit the maximum power capability from the DFIG during decoupled operation. The methods have been established to ensure proper coordination between the IG mode and reactive power compensation from the grid-side converter during decoupled operation. The viability and benefits of the proposed strategy are demonstrated using different test network structures and different wind penetration levels. Control performance has been benchmarked against existing grid code standards and commercial wind generator systems, based on the optimal network support required (i.e., voltage or frequency) by the system operator from a wind farm installed at a particular location.
Resumo:
Bundles of 90° stripe domains have been observed to form into distinct groups, or bands, in mesoscale BaTiO3 single crystal dots. Vector piezoresponse force microscopy (PFM) shows that each band region, when considered as a single entity, possesses a resolved polarization that lies approximately along the pseudocubic direction; antiparallel alignment of this resultant polarization in adjacent bands means that these regions can be considered as 180° “superdomains.” For dots with sidewall dimensions below ~2 microns, Landau–Kittel like scaling in the width of these superdomains was observed, strongly suggesting that they form in response to lateral depolarizing fields. In larger dot structures, scaling laws break down. We have rationalized these observations by considering changes in the driving force for the adoption of equilibrium superdomain periodicities implied by Landau–Kittel-free energy models; we conclude that the formation of ordered bands of superdomains is a uniquely meso/nanoscale phenomenon. We also note that the superdomain bands found by PFM imaging in air contrast with the quadrant arrangements seen previously by Schilling et al. (Nano Lett., 9, 3359 (2009)) through transmission electron microscopy imaging in vacuum. The importance of the exact nature of the boundary conditions in determining the domain patterns that spontaneously form in nanostructures is therefore clearly implied.
Resumo:
We present optical (UBVRI) and near-IR (YJHK) photometry of the normal Type Ia supernova (SN) 2004S. We also present eight optical spectra and one near-IR spectrum of SN 2004S. The light curves and spectra are nearly identical to those of SN 2001el. This is the first time we have seen optical and IR light curves of two Type Ia SNe match so closely. Within the one parameter family of light curves for normal Type Ia SNe, that two objects should have such similar light curves implies that they had identical intrinsic colors and produced similar amounts of Ni-56. From the similarities of the light-curve shapes we obtain a set of extinctions as a function of wavelength that allows a simultaneous solution for the distance modulus difference of the two objects, the difference of the host galaxy extinctions, and RV. Since SN 2001el had roughly an order of magnitude more host galaxy extinction than SN 2004S, the value of R-V = 2.15(-0.22)(+0.24) pertains primarily to dust in the host galaxy of SN 2001el. We have also shown via Monte Carlo simulations that adding rest-frame J-band photometry to the complement of BVRI photometry of Type Ia SNe decreases the uncertainty in the distance modulus by a factor of 2.7. A combination of rest-frame optical and near-IR photometry clearly gives more accurate distances than using rest-frame optical photometry alone.
Resumo:
This is the first comprehensive archive of it's kind gathering together information on brass bands in Ireland from 1850 onwards.
Resumo:
Ab initio cross section calculations for vibronic excitation using the R -matrix approach have been performed on the N 2 + molecular ion complex. A three-state close-coupling expansion is used where the electronic target states; X 2 g + , A 2 u and B 2 u + of the molecular cation are represented by a valence configuration-interaction approximation. A non-adiabatic approximation is invoked to study vibronic excitation for the first three negative bands, (0,0), (1,0) and (2,0) of the X-B transition (B 2 u + v ´ X 2 g + v ´´ ) of N 2 + . Fixed-nuclei and non-adiabatic cross section results are compared with the available experimental data for the (0,0) band and the breakdown of the adiabatic fixed-nuclei approximation is clearly evident for the vibronic excitation of the (1,0) and (2,0) bands in this molecular ion complex.