46 resultados para high-index substrates

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of annular aperture parameters on the optical transmission through arrays of coaxial apertures in a metal film on high refractive index substrates has been investigated experimentally and numerically. It is shown that the transmission resonances are related to plasmonic crystal effects rather than frequency cutoff behavior associated with annular apertures. The role of deviations from ideal aperture shape occurring during the fabrication process has also been studied. Annular aperture arrays are often considered in many applications for achieving high optical transmission through metal films and understanding of nanofabrication tolerances are important. (C) 2010 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical properties of plasmonic semiconductor devices fabricated by focused ion beam (FIB) milling deteriorate because of the amorphisation of the semiconductor substrate. This study explores the effects of combining traditional 30 kV FIB milling with 5 kV FIB patterning to minimise the semiconductor damage and at the same time maintain high spatial resolution. The use of reduced acceleration voltages is shown to reduce the damage from higher energy ions on the example of fabrication of plasmonic crystals on semiconductor substrates leading to 7-fold increase in transmission. This effect is important for focused-ion beam fabrication of plasmonic structures integrated with photodetectors, light-emitting diodes and semiconductor lasers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tetrahexahedral Pt nanocrystals (THH Pt NCs) bound by well-defined high index crystal planes offer exceptional electrocatalytic activity, owing to a high density of low-coordination surface Pt sites. We report, herein, on methanol electrooxidation at THH Pt NC electrodes studied by a combination of electrochemical techniques and in situ FTIR spectroscopy. Pure THH Pt NC surfaces readily facilitate the dissociative chemisorption of methanol leading to poisoning by strongly adsorbed CO. Decoration of the stepped surfaces by Ru adatoms increases the tolerance to poisoning and thereby reduces the onset potential for methanol oxidation by over 100 mV. The Ru modified THH Pt NCs exhibit greatly superior catalytic currents and CO2 yields in the low potential range, when compared with a commercial PtRu alloy nanoparticle catalyst. These results are of fundamental importance in terms of model nanoparticle electrocatalytic systems of stepped surfaces and also have practical significance in the development of surface tailored, direct methanol fuel cell catalysts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tetrahexahedral Pt nanocrystals (THH Pt NCs), bound by high index facets, belong to an emerging class of nanomaterials that promise to bridge the gap between model and practical electrocatalysts. The atomically stepped surfaces of THH Pt NCs are extremely active for the electrooxidation of small organic molecules but they also readily accommodate the dissociative chemisorption of such species, resulting in poisoning by strongly adsorbed CO. Formic acid oxidation is an ideal reaction for studying the balance between these competing catalyst characteristics, since it can proceed by either a direct or a CO mediated pathway. Herein, we describe electrochemical and in situ FTIR spectroscopic investigations of formic acid electrooxidation at both clean and Au adatom modified THH Pt NC surfaces. The Au decoration leads to higher catalytic currents and enhanced CO2 production in the low potential range. As the CO oxidation behaviour of the catalyst is not changed by the presence of the Au, it is likely that the role of the Au is to promote the direct pathway. Beyond their fundamental importance, these results are significant in the development of stable, poison resistant anodic electrocatalysts for direct formic acid fuel cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Archaea and Bacteria constitute a majority of life systems on Earth but have long been considered inferior to Eukarya in terms of solute tolerance. Whereas the most halophilic prokaryotes are known for an ability to multiply at saturated NaCl (water activity (aw) 0.755) some xerophilic fungi can germinate, usually at high-sugar concentrations, at values as low as 0.650–0.605 aw. Here, we present evidence that halophilic prokayotes can grow down to water activities of <0.755 for Halanaerobium lacusrosei (0.748), Halobacterium strain 004.1 (0.728), Halobacterium sp. NRC-1 and Halococcus morrhuae (0.717), Haloquadratum walsbyi (0.709), Halococcus salifodinae (0.693), Halobacterium noricense (0.687), Natrinema pallidum (0.681) and haloarchaeal strains GN-2 and GN-5 (0.635 aw). Furthermore, extrapolation of growth curves (prone to giving conservative estimates) indicated theoretical minima down to 0.611 aw for extreme, obligately halophilic Archaea and Bacteria. These were compared with minima for the most solute-tolerant Bacteria in high-sugar (or other non-saline) media (Mycobacterium spp., Tetragenococcus halophilus, Saccharibacter floricola, Staphylococcus aureus and so on) and eukaryotic microbes in saline (Wallemia spp., Basipetospora halophila, Dunaliella spp. and so on) and high-sugar substrates (for example, Xeromyces bisporus, Zygosaccharomyces rouxii, Aspergillus and Eurotium spp.). We also manipulated the balance of chaotropic and kosmotropic stressors for the extreme, xerophilic fungi Aspergillus penicilloides and X. bisporus and, via this approach, their established water-activity limits for mycelial growth (~0.65) were reduced to 0.640. Furthermore, extrapolations indicated theoretical limits of 0.632 and 0.636 aw for A. penicilloides and X. bisporus, respectively. Collectively, these findings suggest that there is a common water-activity limit that is determined by physicochemical constraints for the three domains of life.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Clozapine, whilst associated commonly with a transient and benign increase in liver enzymes, has also been associated with varying presentations of hepatitis in existing case reports. This report describes what we believe to be the first documented case of acute liver injury and pleural effusion associated with clozapine, resolving after cessation of the agent. The case supports existing literature in advocating a high index of suspicion, particularly in the 4-5 weeks following clozapine initiation, when considering nonspecific clinical symptoms and signs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Platinum (Pt) nanocrystals have demonstrated to be an effective catalyst in many heterogeneous catalytic processes. However, pioneer facets with highest activity have been reported differently for various reaction systems. Although Pt has been the most important counter electrode material for dye-sensitized solar cells (DSCs), suitable atomic arrangement on the exposed crystal facet of Pt for triiodide reduction is still inexplicable. Using density functional theory, we have investigated the catalytic reaction processes of triiodide reduction over {100}, {111} and {411} facets, indicating that the activity follows the order of Pt(111) > Pt(411) > Pt(100). Further, Pt nanocrystals mainly bounded by {100}, {111} and {411} facets were synthesized and used as counter electrode materials for DSCs. The highest photovoltaic conversion efficiency of Pt(111) in DSCs confirms the predictions of the theoretical study. These findings have deepened the understanding of the mechanism of triiodide reduction at Pt surfaces and further screened the best facet for DSCs successfully.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Silicon on Insulator (SOI) substrates offer a promising platform for monolithic high energy physics detectors with integrated read-out electronics and pixel diodes. This paper describes the fabrication and characterisation of specially-configured SOI substrates using improved bonded wafer ion split and grind/polish technologies. The crucial interface between the high resistivity handle silicon and the SOI buried oxide has been characterised using both pixel diodes and circular geometry MOS transistors. Pixel diode breakdown voltages were typically greater than 100V and average leakage current densities at 70 V were only 55 nA/ sq cm. MOS transistors subjected to 24 GeV proton irradiation showed an increased SOI buried oxide trapped charge of only 3.45x1011cn-2 for a dose of 2.7Mrad

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A high impedance metasurface (HIMS) composed of the arrays of intertwined planar spirals on thin (~0.1λ) ferrite-dielectric substrate is proposed. The HIMS exhibits fractional bandwidth in excess of 10% and excellent angular and polarisation stability of the circular polarised waves at oblique incidence.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Epitaxial van der Waals (vdW) heterostructures of organic and layered materials are demonstrated to create high-performance organic electronic devices. High-quality rubrene films with large single-crystalline domains are grown on h-BN dielectric layers via vdW epitaxy. In addition, high carrier mobility comparable to free-standing single-crystal counterparts is achieved by forming interfacial electrical contacts with graphene electrodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon-on-insulator (SOI) substrates incorporating tungsten silicide ground planes (GPs) have been shown to offer the lowest reported crosstalk figure of merit for application in mixed signal integrated circuits. The inclusion of the silicide layer in the structure may lead to stress or defects in the overlying SOI layers and resultant degradation of device performance. It is therefore essential to establish the quality of the silicon on the GPSOI substrate. MOS capacitor structures have been employed in this paper to characterize these GPSOI substrates for the first time. High quality MOS capacitor characteristics have been achieved with minority carrier lifetime of similar to 0.8 ms. These results show that the substrate is suitable for device manufacture with no degradation in the silicon due to stress or metallic contamination resulting from the inclusion of the underlying silicide layer.