32 resultados para Layer-by-Layer Films
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Thick (4 mu m) films of anatase titania are used to photocatalyze the removal of deposited films of amorphous sulfur, similar to 2.8 mu m, thick and under moderate illumination conditions (I = 5.6 mW cm(-2)) on the open bench the process is complete within similar to 8 or 18 h using UVC or UVA light, respectively. Using UVA light, 96% of the product of the photocatalytic removal of the film of sulfur is sulfur dioxide, SO2. The photonic efficiency of this process is similar to 0.16%, which is much higher (> 15 times) than that of the removal of soot by the same films, under similar experimental conditions. In contrast to the open bench work, in a closed system the photocatalytic activity of a titania film toward the removal of sulfur decreased with repeated use, due to the accumulation of sulfuric acid on its surface generated by the subsequent photocatalytic oxidation of the initial product, SO2. The H2SO4-inactivated films are regenerated by soaking in water. The problems of using titania films to remove SO2 from a gaseous environment are discussed briefly.
Resumo:
The photomineralisation of soot by P25 titania films is studied using FT-IR and the process shown to involve the oxidation of carbon to CO2 exclusively. The efficiency of this process is low, however, with a formal quantum efficiency of 1.1 X 10(-4) molecules of carbon oxidized per incident photon of UVA light. The cause of this low efficiency is attributed largely to the less than intimate contact between the fibrous soot layer and the surface of the photocatalyst. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The results of a study of the oxidative mineralisation of 4-CP by oxygen, sensitised by thin films of Degussa P25 TiO2, are reported. The films are used under conditions in which the kinetics of photomineralisation are independent of mass transfer effects and stable towards repeated irradiation. Using a TiO2 film, the process goes through the same mechanism as a TiO2 dispersion, generating the same intermediates, namely: 4-chlorocatechol and hydroquinone. The kinetics of photomineralisation show clear differences between a TiO2 film and a dispersion. With TiO2 films the initial rate of photomineralisation is strongly dependent upon photocatalyst loading, (units; g dm(-3)) reaching a distinct maximum, which appears to be associated with the formation of a monolayer of aggregated particles - the diameter of the aggregated particles is estimated as 0.44 mu m. A simple 2D model is presented to help illustrate the features of such a system. With TiO2 dispersions the rate usually reaches a plateau at ca. 0.5 g dm(-3) of TiO2. For TiO2 films the initial rate depends directly upon the incident light intensity, implying that the photocatalytically active particles are under low illumination conditions, partially shielded by the other particles making up each aggregated particle. In contrast, with TiO2 dispersions R-i depends upon I-0.64, implying that the different light intensities used spanned both the high (R(i)proportional to I-1/2) and low (R(i)proportional to I) intensity kinetic regions. The kinetics of photomineralisation of 4-CP, sensitised by TiO2 films obey the same Langmuir-Hinshelwood expressions as found in most semiconductor photocatalyst work conducted with TiO2 dispersions. However, in a study of the variation R-i as a function of [4-CP] and [O-2] the values for the maximum rates were larger, and those for the apparent Langmuir adsorption coefficients were smaller, than those found for TiO2 dispersions. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
Transient absorption spectroscopy (TAS) has been used to study the interfacial electron-transfer reaction between photogenerated electrons in nanocrystalline titanium dioxide (TiO2) films and molecular oxygen. TiO2 films from three different starting materials (TiO2 anatase colloidal paste and commercial anatase/rutile powders Degussa TiO2 P25 and VP TiO2 P90) have been investigated in the presence of ethanol as a hole scavenger. Separate investigations on the photocatalytic oxygen consumption by the films have also been performed with an oxygen membrane polarographic detector. Results show that a correlation exists between the electron dynamics of oxygen consumption observed by TAS and the rate of oxygen consumption through the photocatalytic process. The highest activity and the fastest oxygen reduction dynamics were observed with films fabricated from anatase TiO2 colloidal paste. The use of TAS as a tool for the prediction of the photocatalytic activities of the materials is discussed. TAS studies indicate that the rate of reduction of molecular oxygen is limited by interfacial electron-transfer kinetics rather than by the electron trapping/detrapping dynamics within the TiO2 particles.
Resumo:
The initial kinetics of the oxidation of 4-chlorophenol, 4-CP, photocatalyzed by titania films and aqueous dispersions were studied as a function of oxygen partial pressure, P-O2, and incident light intensity, I. The reaction conditions were such that the kinetics were independent of [4-CP] but strongly dependent on PO2-a situation that allowed investigation of the less-often studied kinetics of oxygen reduction. The observed kinetics fit a pseudo-steady-state model in which the oxygen is Langmuir-adsorbed on the titania photocatalyst particles before being reduced by photogenerated electrons. The maximum rate of photocatalysis depends directly on I-beta, where, beta = 1 for films and 0.7 for dispersions of titania, indicating that the kinetics are dominated by the surface reactions of the photogenerated electrons and holes for the films and by direct recombination for the powder dispersions. Using the pseudo-first-order model, for both titania films and dispersions, the apparent Langmuir adsorption constant, K-LH, derived from a Langmuir-Hinshelwood analysis of the kinetics, appears to be largely independent of incident light intensity, unlike KLH for 4-CP Consequently, similar values are obtained for the Langmuir adsorption constant, K-ads, extracted from a pseudosteady-state analysis of the kinetics for oxygen on TiO2 dispersions and films in aqueous solution (i.e., ca. 0.0265 +/- 0.005 kPa(-1)), and for both films and dispersions, oxygen appears to be weakly adsorbed on TiO2 compared with 4-CP, at a rate that would take many minutes to reach equilibrium. The value of Kads for oxygen on titania particles dispersed in solution is ca. 4.7 times lower than that reported for the dark Langmuir adsorption isotherm; possible causes for this difference are discussed. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
The kinetics of liquid phase semiconductor photocatalytic and photoassisted reactions are an area of some debate, reignited recently by an article by Ollis(1) in which he proposed a simple pseudo- steady- state model to interpret the Langmuir- Hinshelwood type kinetics, commonly observed in such systems. In the current article, support for this model, over other models, is provided by a reinterpretation of the results of a study, reported initially in 1999,2 of the photoassisted mineralization of 4- chlorophenol, 4-CP, by titania films and dispersions as a function of incident light intensity, I. On the basis of this model, these results indicate that 4- CP is adsorbed more strongly on P25 TiO2 when it is in a dispersed, rather than a film form, due to a higher rate constant for adsorption, k(1). In addition, the kinetics of 4- CP removal appear to depend on I-beta where, beta = 1 or 0.6 for when the TiO2 is in a film or a dispersed form, respectively. These findings are discussed both in terms of the pseudo- steady- state model and other popular kinetic models.
Resumo:
A mechanism of CO oxidation by a thin surface oxide of Rh supported on ceria is proposed: CO is oxidized by the Rh-oxide film, which is subsequently reoxidized by a ceria surface O atom. The proposed mechanism is supported by in situ Raman spectroscopic investigations.
Resumo:
We demonstrate a method for tailoring local mechanical properties near channel surfaces of vascular structural polymers in order to achieve high structural performance in microvascular systems. While synthetic vascularized materials have been created by a variety of manufacturing techniques, unreinforced microchannels act as stress concentrators and lead to the initiation of premature failure. Taking inspiration from biological tissues such as dentin and bone, these mechanical deficiencies can be mitigated by complex hierarchical structural features near to channel surfaces. By employing electrostatic layer-by-layer assembly (ELbL) to deposit films containing halloysite nanotubes onto scaffold surfaces followed by matrix infiltration and scaffold removal, we are able to controllably deposit nanoscale reinforcement onto 200 micron diameter channel surface interiors in microvascular networks. High resolution strain measurements on reinforced networks under load verify that the halloysite reduces strain concentrations and improves mechanical performance.
Resumo:
Abstract Image
A high-capacity diffusive gradients in thin films (DGT) technique has been developed for measurement of total dissolved inorganic arsenic (As) using a long shelf life binding gel layer containing hydrous zirconium oxide (Zr-oxide). Both As(III) and As(V) were rapidly accumulated in the Zr-oxide gel and could be quantitatively recovered by elution using 1.0 M NaOH for freshwater or a mixture of 1.0 M NaOH and 1.0 M H2O2 for seawater. DGT uptake of As(III) and As(V) increased linearly with deployment time and was independent of pH (2.0–9.1), ionic strength (0.01–750 mM), the coexistence of phosphate (0.25–10 mg P L–1), and the aging of the Zr-oxide gel up to 24 months after production. The capacities of the Zr-oxide DGT were 159 μg As(III) and 434 μg As(V) per device for freshwater and 94 μg As(III) and 152 μg As(V) per device for seawater. These values were 5–29 times and 3–19 times more than those reported for the commonly used ferrihydrite and Metsorb DGTs, respectively. Deployments of the Zr-oxide DGT in As-spiked synthetic seawater provided accurate measurements of total dissolved inorganic As over the 96 h deployment, whereas ferrihydrite and Metsorb DGTs only measured the concentrations accurately up to 24 and 48 h, respectively. Deployments in soils showed that the Zr-oxide DGT was a reliable and robust tool, even for soil samples heavily polluted with As. In contrast, As in these soils was underestimated by ferrihydrite and Metsorb DGTs due to insufficient effective capacities, which were likely suppressed by the competing effects of phosphate.
Resumo:
In this work, we synthesize large-area thin films of a conjugated, imine-based, two-dimensional covalent organic framework at the solution/air interface. Thicknesses between ∼2-200 nm are achieved. Films can be transferred to any desired substrate by lifting from underneath, enabling their use as the semiconducting active layer in field-effect transistors.
Resumo:
Thin-film capacitors, with barium strontium titanate (BST) dielectric layers between 7.5 and 950 nm in thickness, were fabricated by pulsed-laser deposition. Both crystallography and cation chemistry were consistent with successful growth of the BST perovskite. At room temperature, all capacitors displayed frequency dispersion such that epsilon (100 kHz)/epsilon (100 Hz) was greater than 0.75. The dielectric constant as a function of thickness was fitted, using the series capacitor model, for BST thicknesses greater than 70 nm. This yielded a large interfacial d(i)/epsilon (i) ratio of 0.40 +/-0.05 nm, implying a highly visible parasitic dead layer within the capacitor structure. Modeled consideration of the dielectric behavior for BST films, whose total thickness was below that of the dead layer, predicted anomalies in the plots of d/epsilon against d at the dead-layer thickness. In the capacitors studied here, no anomaly was observed. Hence, either (i) 7.5 nm is an upper limit for the total dead-layer thickness in the SRO/BST/Au system, or (ii) dielectric collapse is not associated with a distinct interfacial dead layer, and is instead due to a through-film effect. (C) 2001 American Institute of Physics.
Resumo:
Hafnium oxide films have been deposited at 250 °C on silicon and germanium substrates by atomic layer deposition (ALD), using tetrakis-ethylmethylamino hafnium (TEMAH) and water vapour as precursors in a modified Oxford Instruments PECVD system. Self-limiting monolayer growth has been verified, characterised by a growth rate of 0.082 nm/ cycle. Layer uniformity is approximately within ±1% of the mean value. MOS capacitors have been fabricated by evaporating aluminium electrodes. CV analysis has been used to determine the bulk and interface properties of the HfO 2, and their dependence on pre-clean schedule, deposition conditions and post-deposition annealing. The dielectric constant of the HfO 2 is typically 18. On silicon, best results are obtained when the HfO 2 is deposited on a chemically oxidised hydrophilic surface. On germanium, best results are obtained when the substrate is nitrided before HfO 2 deposition, using an in-situ nitrogen plasma treatment. © Springer Science+Business Media, LLC 2007.
Resumo:
Polyamide and polystyrene particles were coated with titanium dioxide films by atomic layer deposition (ALD) and then melt-compounded to form polymer nanocomposites. The rheological properties of the ALD-created nanocomposite materials were characterized with a melt flow indexer, a melt flow spiral mould, and a rotational rheometer. The results suggest that the melt flow properties of polyamide nanocomposites were markedly better than those of pure polyamide and polystyrene nanocomposites. Such behavior was shown to originate in an uncontrollable decrease in the polyamide molecular weight, likely affected by a high thin-film impurity content, as shown in gel permeation chromatography (GPC) and scanning electron microscope (SEM) equipped with an energy-dispersive spectrometer. Transmission electron microscope image showed that a thin film grew on both studied polymer particles, and that subsequent melt-compounding was successful, producing well dispersed ribbon-like titanium dioxide with the titanium dioxide filler content ranging from 0.06 to 1.12wt%. Even though we used nanofillers with a high aspect ratio, they had only a minor effect on the tensile and flexural properties of the polystyrene nanocomposites. The mechanical behavior of polyamide nanocomposites was more complex because of the molecular weight degradation. Our approach here to form polymeric nanocomposites is one way to tailor ceramic nanofillers and form homogenous polymer nanocomposites with minimal work-related risks in handling powder form nanofillers. However, further research is needed to gauge the commercial potential of ALD-created nanocomposite materials. Copyright (C) 2011 John Wiley & Sons, Ltd.