176 resultados para Control-Display Systems.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a thorough investigation of the combined allocator design for Networks-on-Chip (NoC). Particularly, we discuss the interlock of the combined NoC allocator, which is caused by the lock mechanism of priority updating between the local and global arbiters. Architectures and implementations of three interlock-free combined allocators are presented in detail. Their cost, critical path, as well as network level performance are demonstrated based on 65-nm standard cell technology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a novel method of audio-visual feature-level fusion for person identification where both the speech and facial modalities may be corrupted, and there is a lack of prior knowledge about the corruption. Furthermore, we assume there are limited amount of training data for each modality (e.g., a short training speech segment and a single training facial image for each person). A new multimodal feature representation and a modified cosine similarity are introduced to combine and compare bimodal features with limited training data, as well as vastly differing data rates and feature sizes. Optimal feature selection and multicondition training are used to reduce the mismatch between training and testing, thereby making the system robust to unknown bimodal corruption. Experiments have been carried out on a bimodal dataset created from the SPIDRE speaker recognition database and AR face recognition database with variable noise corruption of speech and occlusion in the face images. The system's speaker identification performance on the SPIDRE database, and facial identification performance on the AR database, is comparable with the literature. Combining both modalities using the new method of multimodal fusion leads to significantly improved accuracy over the unimodal systems, even when both modalities have been corrupted. The new method also shows improved identification accuracy compared with the bimodal systems based on multicondition model training or missing-feature decoding alone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The scheduling problem in distributed data-intensive computing environments has become an active research topic due to the tremendous growth in grid and cloud computing environments. As an innovative distributed intelligent paradigm, swarm intelligence provides a novel approach to solving these potentially intractable problems. In this paper, we formulate the scheduling problem for work-flow applications with security constraints in distributed data-intensive computing environments and present a novel security constraint model. Several meta-heuristic adaptations to the particle swarm optimization algorithm are introduced to deal with the formulation of efficient schedules. A variable neighborhood particle swarm optimization algorithm is compared with a multi-start particle swarm optimization and multi-start genetic algorithm. Experimental results illustrate that population based meta-heuristics approaches usually provide a good balance between global exploration and local exploitation and their feasibility and effectiveness for scheduling work-flow applications. © 2010 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper contributes to and expands on the Nakagami-m phase model. It derives exact, closed-form expressions for both the phase cumulative distribution function and its inverse. In addition, empirical first- and second-order statistics obtained from measurements conducted in a body-area network scenario were used to fit the phase probability density function, the phase cumulative distribution function, and the phase crossing rate expressions. Remarkably, the unlikely shapes of the phase statistics, as predicted by the theoretical formulations, are actually encountered in practice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper emerged from work supported by EPSRC grant GR/S84354/01 and proposes a method of determining principal curves, using spline functions, in principal component analysis (PCA) for the representation of non-linear behaviour in process monitoring. Although principal curves are well established, they are difficult to implement in practice if a large number of variables are analysed. The significant contribution of this paper is that the proposed method has minimal complexity, assuming simple spline geometry, thus enabling efficient computation. The paper provides a foundation for further work where multiple curves may be required to represent underlying non-linear information in complex data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a newly proposed machining method named “surface defect machining” (SDM) [Wear, 302, 2013 (1124-1135)] was explored for machining of nanocrystalline beta silicon carbide (3C-SiC) at 300K using MD simulation. The results were compared with isothermal high temperature machining at 1200K under the same machining parameters, emulating ductile mode micro laser assisted machining (µ-LAM) and with conventional cutting at 300 K. In the MD simulation, surface defects were generated on the top of the (010) surface of the 3C-SiC work piece prior to cutting, and the workpiece was then cut along the <100> direction using a single point diamond tool at a cutting speed of 10 m/sec. Cutting forces, sub-surface deformation layer depth, temperature in the shear zone, shear plane angle and friction coefficient were used to characterize the response of the workpiece. Simulation results showed that SDM provides a unique advantage of decreased shear plane angle which eases the shearing action. This in turn causes an increased value of average coefficient of friction in contrast to the isothermal cutting (carried at 1200 K) and normal cutting (carried at 300K). The increase of friction coefficient however was found to aid the cutting action of the tool due to an intermittent dropping in the cutting forces, lowering stresses on the cutting tool and reducing operational temperature. Analysis shows that the introduction of surface defects prior to conventional machining can be a viable choice for machining a wide range of ceramics, hard steels and composites compared to hot machining.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new domain-specific reconfigurable sub-pixel interpolation architecture for multi-standard video Motion Estimation (ME) is presented. The mixed use of parallel and serial-input FIR filters achieves high throughput rate and efficient silicon utilisation. Flexibility has been achieved by using a multiplexed reconfigurable data-path controlled by a selection signal. Silicon design studies show that this can be implemented using 34.8K gates with area and performance that compares very favourably with existing fixed solutions based solely on the H.264 standard. ©2008 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the problem of secure transmission in two-hop amplify-and-forward untrusted relay networks. We analyze the ergodic secrecy capacity (ESC) and present compact expressions for the ESC in the high signal-to-noise ratio regime. We also examine the impact of large scale antenna arrays at either the source or the destination. For large antenna arrays at the source, we confirm that the ESC is solely determined by the channel between the relay and the destination. For very large antenna arrays at the destination, we confirm that the ESC is solely determined by the channel between the source and the relay.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a novel method to carry out monitoring of transport infrastructure such as pavements and bridges through the analysis of vehicle accelerations. An algorithm is developed for the identification of dynamic vehicle-bridge interaction forces using the vehicle response. Moving force identification theory is applied to a vehicle model in order to identify these dynamic forces between the vehicle and the road and/or bridge. A coupled half-car vehicle-bridge interaction model is used in theoretical simulations to test the effectiveness of the approach in identifying the forces. The potential of the method to identify the global bending stiffness of the bridge and to predict the pavement roughness is presented. The method is tested for a range of bridge spans using theoretical simulations and the influences of road roughness and signal noise on the accuracy of the results are investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Smart management of maintenances has become fundamental in manufacturing environments in order to decrease downtime and costs associated with failures. Predictive Maintenance (PdM) systems based on Machine Learning (ML) techniques have the possibility with low added costs of drastically decrease failures-related expenses; given the increase of availability of data and capabilities of ML tools, PdM systems are becoming really popular, especially in semiconductor manufacturing. A PdM module based on Classification methods is presented here for the prediction of integral type faults that are related to machine usage and stress of equipment parts. The module has been applied to an important class of semiconductor processes, ion-implantation, for the prediction of ion-source tungsten filament breaks. The PdM has been tested on a real production dataset. © 2013 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In semiconductor fabrication processes, effective management of maintenance operations is fundamental to decrease costs associated with failures and downtime. Predictive Maintenance (PdM) approaches, based on statistical methods and historical data, are becoming popular for their predictive capabilities and low (potentially zero) added costs. We present here a PdM module based on Support Vector Machines for prediction of integral type faults, that is, the kind of failures that happen due to machine usage and stress of equipment parts. The proposed module may also be employed as a health factor indicator. The module has been applied to a frequent maintenance problem in semiconductor manufacturing industry, namely the breaking of the filament in the ion-source of ion-implantation tools. The PdM has been tested on a real production dataset. © 2013 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many modeling problems require to estimate a scalar output from one or more time series. Such problems are usually tackled by extracting a fixed number of features from the time series (like their statistical moments), with a consequent loss in information that leads to suboptimal predictive models. Moreover, feature extraction techniques usually make assumptions that are not met by real world settings (e.g. uniformly sampled time series of constant length), and fail to deliver a thorough methodology to deal with noisy data. In this paper a methodology based on functional learning is proposed to overcome the aforementioned problems; the proposed Supervised Aggregative Feature Extraction (SAFE) approach allows to derive continuous, smooth estimates of time series data (yielding aggregate local information), while simultaneously estimating a continuous shape function yielding optimal predictions. The SAFE paradigm enjoys several properties like closed form solution, incorporation of first and second order derivative information into the regressor matrix, interpretability of the generated functional predictor and the possibility to exploit Reproducing Kernel Hilbert Spaces setting to yield nonlinear predictive models. Simulation studies are provided to highlight the strengths of the new methodology w.r.t. standard unsupervised feature selection approaches. © 2012 IEEE.