Learning from time series:Supervised Aggregative Feature Extraction
Data(s) |
01/12/2012
|
---|---|
Resumo |
<p>Many modeling problems require to estimate a scalar output from one or more time series. Such problems are usually tackled by extracting a fixed number of features from the time series (like their statistical moments), with a consequent loss in information that leads to suboptimal predictive models. Moreover, feature extraction techniques usually make assumptions that are not met by real world settings (e.g. uniformly sampled time series of constant length), and fail to deliver a thorough methodology to deal with noisy data. In this paper a methodology based on functional learning is proposed to overcome the aforementioned problems; the proposed Supervised Aggregative Feature Extraction (SAFE) approach allows to derive continuous, smooth estimates of time series data (yielding aggregate local information), while simultaneously estimating a continuous shape function yielding optimal predictions. The SAFE paradigm enjoys several properties like closed form solution, incorporation of first and second order derivative information into the regressor matrix, interpretability of the generated functional predictor and the possibility to exploit Reproducing Kernel Hilbert Spaces setting to yield nonlinear predictive models. Simulation studies are provided to highlight the strengths of the new methodology w.r.t. standard unsupervised feature selection approaches. © 2012 IEEE.</p> |
Identificador |
http://dx.doi.org/10.1109/CDC.2012.6427042 http://www.scopus.com/inward/record.url?scp=84874234366&partnerID=8YFLogxK |
Idioma(s) |
eng |
Direitos |
info:eu-repo/semantics/restrictedAccess |
Fonte |
Schirru , A , Susto , G A , Pampuri , S & McLoone , S 2012 , ' Learning from time series : Supervised Aggregative Feature Extraction ' Proceedings of the IEEE Conference on Decision and Control , pp. 5254-5259 . DOI: 10.1109/CDC.2012.6427042 |
Palavras-Chave | #/dk/atira/pure/subjectarea/asjc/2200/2207 #Control and Systems Engineering #/dk/atira/pure/subjectarea/asjc/2600/2611 #Modelling and Simulation #/dk/atira/pure/subjectarea/asjc/2600/2606 #Control and Optimization |
Tipo |
article |