154 resultados para Van der Pol
Resumo:
Venom has only been recently discovered to be a basal trait of the Anguimorpha lizards. Consequently, very little is known about the timings of toxin recruitment events, venom protein molecular evolution, or even the relative physical diversifications of the venom system itself. A multidisciplinary approach was used to examine the evolution across the full taxonomical range of this similar to 130 million-year-old clade. Analysis of cDNA libraries revealed complex venom transcriptomes. Most notably, three new cardioactive peptide toxin types were discovered (celestoxin, cholecystokinin, and YY peptides). The latter two represent additional examples of convergent use of genes in toxic arsenals, both having previously been documented as components of frog skin defensive chemical secretions. Two other novel venom gland-overexpressed modified versions of other protein frameworks were also recovered from the libraries (epididymal secretory protein and ribonuclease). Lectin, hyaluronidase, and veficolin toxin types were sequenced for the first time from lizard venoms and shown to be homologous to the snake venom forms. In contrast, phylogenetic analyses demonstrated that the lizard natriuretic peptide toxins were recruited independently of the form in snake venoms. The de novo evolution of helokinestatin peptide toxin encoding do-mains within the lizard venom natriuretic gene was revealed to be exclusive to the helodermatid/anguid subclade. New isoforms were sequenced for cysteine-rich secretory protein, kallikrein, and phospholipase A 2 toxins. Venom gland morphological analysis revealed extensive evolutionary tinkering. Anguid glands are characterized by thin capsules and mixed glands, serous at the bottom of the lobule and mucous toward the apex. Twice, independently this arrangement was segregated into specialized serous protein-secreting glands with thick capsules with the mucous lobules now distinct (Heloderma and the Lanthanotus/Varanus clade). The results obtained highlight the importance of utilizing evolution-based search strategies for biodiscovery and emphasize the largely untapped drug design and development potential of lizard venoms. Molecular & Cellular Proteomics 9:2369-2390, 2010.
Resumo:
We describe a new ab initio method for solving the time-dependent Schrödinger equation for multi-electron atomic systems exposed to intense short-pulse laser light. We call the method the R-matrix with time-dependence (RMT) method. Our starting point is a finite-difference numerical integrator (HELIUM), which has proved successful at describing few-electron atoms and atomic ions in strong laser fields with high accuracy. By exploiting the R-matrix division-of-space concept, we bring together a numerical method most appropriate to the multi-electron finite inner region (R-matrix basis set) and a different numerical method most appropriate to the one-electron outer region (finite difference). In order to exploit massively parallel supercomputers efficiently, we time-propagate the wavefunction in both regions by employing Arnoldi methods, originally developed for HELIUM.
Resumo:
We dated a continuous, ~22-m long sediment sequence from Lake Challa (Mt. Kilimanjaro area, Kenya/Tanzania) to produce a solid chronological framework for multi-proxy reconstructions of climate and environmental change in equatorial East Africa over the past 25,000 years. The age model is based on a total of 168 AMS 14C dates on bulk-organic matter, combined with a 210Pb chronology for recent sediments and corrected for a variable old-carbon age offset. This offset was estimated by i) pairing bulk-organic 14C dates with either 210Pb-derived time markers or 14C dates on grass charcoal, and ii) wiggle-matching high-density series of bulk-organic 14C dates. Variation in the old-carbon age offset through time is relatively modest, ranging from ~450 yr during glacial and late glacial time to ~200 yr during the early and mid-Holocene, and increasing again to ~250 yr today. The screened and corrected 14C dates were calibrated sequentially, statistically constrained by their stratigraphical order. As a result their constrained calendar-age distributions are much narrower, and the calibrated dates more precise, than if each 14C date had been calibrated on its own. The smooth-spline age-depth model has 95% age uncertainty ranges of ~50–230 yr during the Holocene and ~250–550 yr in the glacial section of the record. The d13C values of paired bulk-organic and grass-charcoal samples, and additional 14C dating on selected turbidite horizons, indicates that the old-carbon age offset in Lake Challa is caused by a variable contribution of old terrestrial organic matter eroded from soils, and controlled mainly by changes in vegetation cover within the crater basin.
Resumo:
Crystallisation of the square-planar complex trans-Pt{PPh2(C16H15)}(2)Cl-2 from dichloromethane-diethyl ether (1:1) affords two different solvates; trans-Pt{PPh2(C16H15)}(2)Cl-2. CH2Cl2 1 and trans-Pt{PPh2(C16H15)}(2)Cl-2. Et2O 2; the CH2Cl2 forms H-bonding interactions with the complex whereas the Et2O participates only in weak van der Waals interactions; these differences arise from the different hydrogen-bonding characteristics of each solvent.
Resumo:
A novel class of anionic surfactants was prepared through the neutralization of pyrrolidine or imidazole by alkylcarboxylic acids. The compounds, namely the pyrrolidinium alkylcarboxylates ([Pyrr][CnH2n+1COO]) and imidazolium alkylcarboxylates ([Im][CnH2n+1COO]), were obtained as ionic liquids at room temperature. Their aggregation behavior has been examined as a function of the alkyl chain length (from n = 5 to 8) by surface tensiometry and conductivity. Decreases in the critical micelle concentration (cmc) were obtained, for both studied PIL families, when increasing the anionic alkyl chain length (n). Surprisingly, a large effect of the alkyl chain length was observed on the minimum surface area per surfactant molecule (Amin) and, hence the maximum surface excess concentration (Gmax) when the counterion was the pyrrolidinium cation. This unusual comportment has been interpreted in term of a balance between van der Waals and coulombic interactions. Conductimetric measurements permit determination of the degree of ionization of the micelle (a) and the molar conductivity (?M) of these surfactants as a function of n. The molar conductivities at infinite dilution in water (?8) of the [Pyrr]+ and [Im]+ cations have been then determined by using the classical Kohlraush equation. Observed change in the physicochemical, surface, and micellar properties of these new protonic ionic liquid surfactants can be linked to the nature of the cation. By comparison with classical anionic surfactants having inorganic counterions, pyrrolidinium alkylcarboxylates and imidazolium alkylcarboxylates exhibit a higher ability to aggregate in aqueous solution, demonstrating their potential applicability as surfactant.
Resumo:
We employ time-dependent R-matrix theory to study ultra-fast dynamics in the doublet 2s2p(2) configuration of C+ for a total magnetic quantum number M = 1. In contrast to the dynamics observed for M = 0, ultra-fast dynamics for M = 1 is governed by spin dynamics in which the 2s electron acts as a flag rather than a spectator electron. Under the assumption that m(S) = 1/2, m(2s) = 1/2 allows spin dynamics involving the two 2p electrons, whereas m(2s) = -1/2 prevents spin dynamics of the two 2p electrons. For a pump-probe pulse scheme with (h) over bar omega(pump) = 10.9 eV and (h) over bar omega(probe) = 16.3 eV and both pulses six cycles long, little sign of spin dynamics is observed in the total ionization probability. Signs of spin dynamics can be observed, however, in the ejected-electron momentum distributions. We demonstrate that the ejected-electron momentum distributions can be used for unaligned targets to separate the contributions of initial M = 0 and M = 1 levels. This would, in principle, allow unaligned target ions to be used to obtain information on the different dynamics in the 2s2p(2) configuration for the M = 0 and M = 1 levels from a single experime
Resumo:
We investigate the influence of the autoionizing 3s3p6nl resonances on the fifth harmonic generated by 200–240 nm laser fields interacting with Ar. To determine the influence of a multielectron response we develop the capability within time-dependent R-matrix theory to determine the harmonic spectra generated. The fifth harmonic is affected by interference between the response of a 3s electron and the response of a 3p electron, as demonstrated by the asymmetric profiles in the harmonic yields as functions of wavelength.
Resumo:
Decreasing the constriction size and residence time in hydrodynamic cavitation is predicted to give increased hot spot temperatures at bubble collapse and increased radical formation rate. Cavitation in a 100 x 100 mu m(2) rectangular micro channel and in a circular 750 mu m diameter milli channel has been investigated with computational fluid dynamics software and with imaging and radical production experiments. No radical production has been measured in the micro channel. This is probably because there is no spherically symmetrical collapse of the gas pockets in the channel which yield high hot spot temperatures. The potassium iodide oxidation yield in the presence of chlorohydrocarbons in the milli channel of up to 60 nM min(-1) is comparable to values reported on hydrodynamic cavitation in literature, but lower than values for ultrasonic cavitation. These small constrictions can create high apparent cavitation collapse frequencies.
Resumo:
The R-matrix incorporating time (RMT) method is a method developed recently for solving the time-dependent Schrödinger equation for multielectron atomic systems exposed to intense short-pulse laser light. We have employed the RMT method to investigate the time delay in the photoemission of an electron liberated from a 2p orbital in a neon atom with respect to one released from a 2s orbital following absorption of an attosecond xuv pulse. Time delays due to xuv pulses in the range 76-105 eV are presented. For an xuv pulse at the experimentally relevant energy of 105.2 eV, we calculate the time delay to be 10.2±1.3 attoseconds (as), somewhat larger than estimated by other theoretical calculations, but still a factor of 2 smaller than experiment. We repeated the calculation for a photon energy of 89.8 eV with a larger basis set capable of modeling correlated-electron dynamics within the neon atom and the residual Ne ion. A time delay of 14.5±1.5 as was observed, compared to a 16.7±1.5 as result using a single-configuration representation of the residual Ne+ ion.
Resumo:
<p> The recollision model has been applied to separate the probability for double ionization into contributions from electron-impact ionization and electron-impact excitation for intensities at which the dielectronic interaction is important for generating double ionization. For a wavelength of 780 am, electron-impact excitation dominates just above the threshold intensity for double ionization, approximate to 1.2 x 10(14) W cm(-2), with electron-impact ionization becoming more important for higher intensities. For a wavelength of 390 nm, the ratio between electron-impact ionization and electron-impact excitation remains fairly constant for all intensities above the threshold intensity for double ionization, approximate to 6 x 10(14) W cm(-2). The results point to an explanation of the experimental results, but more detailed calculations on the behaviour of excited He+ ions are required.</p>