Hydrodynamic cavitation in micro channels with channel sizes of 100 and 750 micrometers


Autoria(s): Rooze, Joost; Andre, Matthieu; Van Der Gulik, Gert-Jan S.; Fernandez-Rivas, David; Gardeniers, J.G.E.; Rebrov, Evgeny V.; Schouten, Jaap C.; Keurentjes, Jos T. F.
Data(s)

01/01/2012

Resumo

Decreasing the constriction size and residence time in hydrodynamic cavitation is predicted to give increased hot spot temperatures at bubble collapse and increased radical formation rate. Cavitation in a 100 x 100 mu m(2) rectangular micro channel and in a circular 750 mu m diameter milli channel has been investigated with computational fluid dynamics software and with imaging and radical production experiments. No radical production has been measured in the micro channel. This is probably because there is no spherically symmetrical collapse of the gas pockets in the channel which yield high hot spot temperatures. The potassium iodide oxidation yield in the presence of chlorohydrocarbons in the milli channel of up to 60 nM min(-1) is comparable to values reported on hydrodynamic cavitation in literature, but lower than values for ultrasonic cavitation. These small constrictions can create high apparent cavitation collapse frequencies.

Formato

application/pdf

Identificador

http://pure.qub.ac.uk/portal/en/publications/hydrodynamic-cavitation-in-micro-channels-with-channel-sizes-of-100-and-750-micrometers(ab65aa16-e174-4b2d-af2e-1b28bc11a459).html

http://dx.doi.org/10.1007/s10404-011-0891-5

http://pure.qub.ac.uk/ws/files/2171180/Hydrodynamic_cavitation_in_micro_channels_with_channel_sizes.pdf

Idioma(s)

eng

Direitos

info:eu-repo/semantics/openAccess

Fonte

Rooze , J , Andre , M , Van Der Gulik , G-J S , Fernandez-Rivas , D , Gardeniers , J G E , Rebrov , E V , Schouten , J C & Keurentjes , J T F 2012 , ' Hydrodynamic cavitation in micro channels with channel sizes of 100 and 750 micrometers ' Microfluidics and Nanofluidics , vol 12 , no. 1-4 , pp. 499-508 . DOI: 10.1007/s10404-011-0891-5

Palavras-Chave #/dk/atira/pure/subjectarea/asjc/3100/3104 #Condensed Matter Physics #/dk/atira/pure/subjectarea/asjc/2500/2504 #Electronic, Optical and Magnetic Materials #/dk/atira/pure/subjectarea/asjc/2500/2505 #Materials Chemistry
Tipo

article