258 resultados para Nikon, Patriarch of Moscow, 1605-1681.
Resumo:
The structure of one tautomer (amine form) of cyano-carbamimidic acid ethyl ester or (amino-ethoxy-methylidene)aminoformonitrile (CAS: 13947-84-7) was determined by single crystal X-ray diffraction. Ab initio quantum chemical calculations at the B3LYP, MP2 and G3 levels were performed to investigate the stability and the formation of the different tautomers and conformers. The calculations indicate that the amine form is the more stable tautomer, showing a high degree of election conjugation. The most stable amine conformer located by the calculations corresponds to the crystallized structure. On the contrary, in the less stable imine form, the conjugation is separated by a N2-C2 single bond. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A short synthesis of the postulated structure for indolizidine alkaloid 259B with the hydrogens at C5 and C9 entgegen has been achieved with complete control of stereochemistry at C5. Both diastereoisomers at C8 were obtained, but neither proved to be the natural product. The comparison of the mass and FTIR spectral properties of the synthetic compounds to those of the natural material strongly suggest that the gross structure is correct and that the difference may be a branch in the C5 alkyl side-chain. The GC-retention times of the two synthetic compounds were markedly longer than that of the natural 5,9E-259B.
Resumo:
In this study, we report on a novel, expedited solid-phase approach for the synthesis of biotinylated and fluorescently tagged irreversible affinity based probes for the chymotrypsin and elastase-like serine proteases. The novel solid-phase biotinylation or fluorescent labeling of the aminoalkane diphenyl phosphonate warhead using commercially available Biotin-PEG-NovaTag or EDANS NovaTag resin permits rapid, facile synthesis of these reagents. We demonstrate the kinetic evaluation and utilization of a number of these irreversible inactivators for chymotrypsin-like (chymotrypsin/human cathepsin G) and elastase-like serine proteases. Encouragingly, these compounds display comparable potency against their target proteases as their N-benzyloxycarbonyl (Cbz)-protected parent compounds, from which they were derived, and function as efficient active site-directed inactivators of their target proteases. We subsequently applied the biotinylated reagents for the sensitive detection of protease species via Western blot, showing that the inactivation of the protease was specifically mediated through the active site serine. Furthermore, we also demonstrate the successful detection of serine protease species with the fluorescently labeled derivatives “in-gel”, thus avoiding the need for downstream Western blotting. Finally, we also show the utility of biotinylated and pegylated affinity probes for the isolation/enrichment of serine protease species, via capture with immobilized streptavidin, and their subsequent identification via de novo sequencing. Given their selectivity of action against the serine proteases, we believe that these reagents can be exploited for the direct, rapid, and selective identification of these enzymes from biological milieu containing multiple protease subclasses.
Resumo:
Concise syntheses of the substituted enynediones 28a, 33b and 36 starting from the cyclohexenealdehyde 18, corresponding to ring A in the taxanes, and the vinylstannane 24, are described. Treatment of 36 with Bu3SnH–AIBN did not lead to the oxy-substituted taxadiene 37 expected from a tandem radical macrocyclisation–radical transannulation sequence; instead, a mixture of unidentified products resulted. When the PMB ether 33b corresponding to the alcohol 36 was treated with Bu3SnH–AIBN under similar conditions, p-anisaldehyde was isolated, as a major by-product, but no evidence for the formation of a taxadiene could be observed. In contrast, the iododienynedione 41, i.e., deoxy 36, underwent a tandem radical macrocyclisation–transannulation sequence, when treated with Bu3SnH–AIBN, leading to the tetraoxy-bis-nortaxadiene 42 in 44% yield. Attempts to synthesise the alcohol 28b from the silyl ether 28a en route to the iodide 28c instead gave the substituted tetrahydrofuran 29 via an intramolecular oxy-Michael reaction.
Resumo:
The electrochemical reduction of benzoic acid (BZA) has been studied at platinum micro-electrodes (10 and 2 mu m diameters) in acetonitrile (MeCN) and six room temperature ionic liquids (RTILs): [C(2)mim][NTf2], [C(4)min][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][BF4], [C(4)mim][NO3] and [C(4)mim][PF6] (where [C(n)mim](+)=1-alkyl-3-methylimidazolium, [NTf2](-)=bis(trifluoromethylsulphonyl)imide, [C(4)mpyrr](+)=N-butyl-N-methylpyrrolidinium, [BF4](-)=tetrafluoroborate, [NO3](-)=nitrate and [PF6] = hexafluorophosphate). Based on the theoretical fitting to experimental chronoamperometric transients in [C4mpyrr][NTf2] and MeCN at several concentrations and on different size electrodes, it is suggested that a fast chemical step preceeds the electron transfer step in a CE mechanism (given below) in both RTILs and MeCN, leading to the appearance of a simple one-electron transfer mechanism.
Resumo:
The tropolone subunit of the naturally occurring alkaloid rubrolone aglycon is synthesized via a short reaction sequence starting with a 1,3-dipolar cycloaddition of a pyrylium ylide and indenone, followed by enone oxidation, oxygen bridge elimination and finally hydroxy group oxidation.
Resumo:
Two distinct systems for the rhodium-catalyzed enantioselective desymmetrization of meso-cyclic anhydrides have been developed. Each system has been optimized and are compatible with the use of in situ prepared organozinc reagents. Rhodium/PHOX species efficiently catalyze the addition of alkyl nucleophiles to glutaric anhydrides, while a rhodium/phosphoramidite system is effective in the enantioselective arylation of succinic and glutaric anhydrides.
Resumo:
A rhodium-catalyzed enantioselective cross-coupling of sp³ organozinc reagents and 3,5-dimethylglutaric anhydride has been developed to afford the corresponding products, syn-deoxypolypropionates, in excellent yields and enantioselectivities. This reaction has been developed so that both commercially available and in situ prepared organozinc reagents are competent coupling partners.
Resumo:
The construction of a library of natural and related polyacetylenes using a convergent synthetic strategy based on a palladium mediated cross-coupling reaction is described. The systematic synthetic study led to all possible alkene isomers of the hydroxy matricaria esters 29-32, and the corresponding tiglates 1-4. The synthesis of many of these compounds is described for the first time.
Resumo:
The first step of the mineralisation of fosfomycin by R. huakuii PMY1 is hydrolytic ring opening with the formation of (1R, 2R)-1,2-dihydroxypropylphosphonic acid. This phosphonic acid and its three stereoisomers were synthesised by chemical means and tested as their ammonium salts for mineralisation as evidenced by release of P-i. Only the (1R, 2R)-isomer was degraded. A number of salts of phosphonic acids such as (+/-)-1,2-epoxybutyl-, (+/-)-1,2-dihydroxyethyl-, 2-oxopropyl-, (+/-)-2-hydroxypropyl-, (+/-)-1-hydroxypropyl- and (+/-)-1-hydroxy-2-oxopropylphosphonic acid were synthesised chemically, but none supported growth. In vitro C-P bond cleavage activity was however detected with the last phosphonic acid. A mechanism involving phosphite had to be discarded as it could not be used as a phosphorus source. R. huakuii PMY1 grew well on (R)- and ( S)- lactic acid and hydroxyacetone, but less well on propionic acid and not on acetone or (R)- and (+/-)-1,2-propanediol. The Pi released from (1R, 2R)-1,2-dihydroxypropylphosphonic acid labelled with one oxygen-18 in the PO3H2 group did not stay long enough in the cells to allow complete exchange of O-18 for O-16 by enzymic turnover.
Resumo:
Successive treatment of 9-(phenylethynyl)fluoren-9-ol (1a), with HBr, butyllithium and chlorodiphenylphosphine furnishes 3,3-(biphenyl-2,2'-diyl)-1-diphenylphosphino-1-phenylallene (5). Moreover, reaction of 1a directly with chlorodiphenylphosphine yields the corresponding allenylphosphine oxide (6). The allenylphosphine (5), and Fe-2(CO)(9) initially form the phosphine-Fe(CO)(4) complex, 11, which is very thermally sensitive and readily loses a carbonyl ligand. In the resulting phosphine-Fe(CO)(3) system, 12, the additional site at iron is coordinated by the allene double bond adjacent to phosphorus; the Fe(CO) 3 tripod in 12 exhibits restricted rotation on the NMR time-scale even at room temperature. The corresponding chromium complex, (5)-Cr(CO)5 (9), has also been prepared. The gold complexes (5)AuCl (13), and [(5)-Au(THT)](+) X-, where (THT) is tetrahydrothiophene, and X = PF6 (14a), or ClO4 (14b), are analogous to the known triphenylphosphine-gold complexes. In contrast, in the (arene)(allenylphosphine) RuCl2 system the allene double bond adjacent to phosphorus displaces a chloride, and the resulting cationic species undergoes nucleophilic attack by water yielding ultimately a five-membered Ru-P-C=C-O ruthenacycle (17). Thus, the allenylphosphine (5), reacts initially as a conventional mono-phosphine but, when the metal centre has a readily displaceable ligand such as a carbonyl or halide, the allene double bond adjacent to the phosphorus can also function as a donor. X- ray crystal structures are reported for 5, 6, 11, 12, 13, 14a, 14b and 17.
Resumo:
cis-Dihydrodiol metabolites were obtained from dioxygenase-catalysed asymmetric dihydroxylations of. five monocyclic (azabiphenyl) and four tricyclic (azaphenanthrene) azaarene substrates. Enantiopurity values and absolute configuration assignments were determined using a combination of stereochemical correlation, X-ray crystallography and spectroscopy methods. The degree of regioselectivity found during cis-dihydroxylation of monocyclic azaarenes (2,3 bond >> 3,4 bond) and of tricyclic azaarenes (bay region > non-bay region bonds) was dependent on the type of dioxygenase used. The cis-dihydrodiol metabolite from an azaarene (3-phenylpyridine) was utilised in the chemoenzymatic synthesis of the corresponding trans-dihydrodiol.
Resumo:
The development of an asymmetric route for the synthesis of alpha,beta-butenolide building blocks, starting from commercially available D-mannitol, is described. The devised route was applied to a synthesis of the (S)-(–)-enantiomer of the antiviral natural product umbelactone, together with the construction of other synthetically useful lactone structures.