175 resultados para electrical and electronics engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: The quadrifilar helix antenna (QHA) is used widely for terrestrial [1] and space communication systems [2], where it is necessary to generate a circularly polarised cardioid-shaped radiation pattern with a high front-to-back ratio and low cross-polarisation. The radiating structure comprises four helical conductors which are excited in phase quadrature at the feed point, which is usually located at the centre of the top radials. The physical size of the quadrifilar antenna can be reduced by dielectric loading [3] or by meandering the printed linear elements [4]. However, in the former arrangement dielectric absorption reduces the radiation efficiency of the antenna, and the latter technique is not suitable for constructing free standing wire structures, which are normally used for spacecraft payloads in the VHF and UHF bands [2]. This Letter shows that a significant reduction in the axial length of a 1/2 turn half-wavelength QHA can be achieved by modifying the geometry of the helices in the region around the midpoint where a current null exists. Simulated and experimental results at L band are used to show that a size reduction of up to 15% is possible without significantly degrading the pattern shape and the bandwidth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bandwidth of a resonant quadrifilar helix antenna (QHA) is shown to be strongly dependent on the design of the feed network. In this paper, we compare the impedance and radiation-pattern performance of two QHAs driven by different feed arrangements. A qualitative explanation for the difference in the behaviour of the antenna is given by observing the amplitude and phase distribution of the current in the helices. (c) 2005 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An equation is presented for calculating the fairness of dynamically adaptive packet schedulers such as dynamic weighted fair queuing (DWFQ). The fairness of static packet schedulers such as weighted fair queue (WFQ) can be found using the widely accepted Worst-case Fair Index. The fairness of DWFQ can be measured using an Adapted Worst-case Fairness Index (AWFI). The AWFI enables a direct comparison of fairness properties of the DWFQ or other dynamically adaptive schedulers with static/non-adaptive schedulers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bodyworn antennas are found in a wide range of medical, military and personal communication applications, yet reliable communication from the surface of the human body still presents a range of engineering challenges. At UHF and microwave frequencies, bodyworn antennas can suffer from reduced efficiency due to electromagnetic absorption in tissue, radiation pattern fragmentation and variations in feed-point impedance. The significance and nature of these effects are system specific and depend on the operating frequency, propagation environment and physical constraints on the antenna itself. This paper describes how numerical electromagnetic modelling techniques such as FDTD (finite-difference time-domain) can be used in the design of bodyworn antennas. Examples are presented for 418 MHz, 916 .5 MHz and 2 . 45 GHz, in the context of both biomedical signalling and wireless personal-area networking applications such as the Bluetooth(TM)* wireless technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides a comprehensive analysis of thermal resistance of trench isolated bipolar transistors on SOI substrates based on 3D electro-thermal simulations calibrated to experimental data. The impact of emitter length, width, spacing and number of emitter fingers on thermal resistance is analysed in detail. The results are used to design and optimise transistors with minimum thermal resistance and minimum transistor area. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, by investigating the influence of source/drain extension region engineering (also known as gate-source/drain underlap) in nanoscale planar double gate (DG) SOI MOSFETs, we offer new insights into the design of future nanoscale gate-underlap DG devices to achieve ITRS projections for high performance (HP), low standby power (LSTP) and low operating power (LOP) logic technologies. The impact of high-kappa gate dielectric, silicon film thickness, together with parameters associated with the lateral source/drain doping profile, is investigated in detail. The results show that spacer width along with lateral straggle can not only effectively control short-channel effects, thus presenting low off-current in a gate underlap device, but can also be optimized to achieve lower intrinsic delay and higher on-off current ratio (I-on/I-off). Based on the investigation of on-current (I-on), off-current (I-off), I-on/I-off, intrinsic delay (tau), energy delay product and static power dissipation, we present design guidelines to select key device parameters to achieve ITRS projections. Using nominal gate lengths for different technologies, as recommended from ITRS specification, optimally designed gate-underlap DG MOSFETs with a spacer-to-straggle (s/sigma) ratio of 2.3 for HP/LOP and 3.2 for LSTP logic technologies will meet ITRS projection. However, a relatively narrow range of lateral straggle lying between 7 to 8 nm is recommended. A sensitivity analysis of intrinsic delay, on-current and off-current to important parameters allows a comparative analysis of the various design options and shows that gate workfunction appears to be the most crucial parameter in the design of DG devices for all three technologies. The impact of back gate misalignment on I-on, I-off and tau is also investigated for optimized underlap devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper proposes for the first time, a novel design methodology based on the optimization of source/drain extension (SDE) regions to significantly improve the trade-off between intrinsic voltage gain (A(vo)) and cut-off frequency (f(T)) in nanoscale double gate (DG) devices. Our results show that an optimally designed 25 nm gate length SDE region engineered DG MOSFET operating at drain current of 10 mu A/mu m, exhibits up to 65% improvement in intrinsic voltage gain and 85% in cut-off frequency over devices designed with abrupt SIDE regions. The influence of spacer width, lateral source/drain doping gradient and symmetric as well as asymmetrically designed SDE regions on key analog figures of merit (FOM) such as transconductance (g(m)), transconductance-to-current ratio (g(m)/I-ds), Early voltage (V-EA), output conductance (g(ds)) and gate capacitances are examined in detail. The present work provides new opportunities for realizing future low-voltage/low-power analog circuits with nanoscale SDE engineered DG MOSFETs. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we analyze the enormous potential of engineering source/drain extension (SDE) regions in FinFETs for ultra-low-voltage (ULV) analog applications. SDE region design can simultaneously improve two key analog figures of merit (FOM)-intrinsic de gain (A(vo)) and cutoff frequency (f(T)) for 60 and 30 nm FinFETs operated at low drive current (J(ds) = 5 mu A/mu m). The improved Avo and fT are nearly twice compared to those of devices with abrupt SDE regions. The influence of the SDE region profile and its impact on analog FOM is extensively analyzed. Results show that SDE region optimization provides an additional degree of freedom apart from device parameters (fin width and aspect ratio) to design future nanoscale analog devices. The results are analyzed in terms of spacer-to-straggle ratio a new design parameter for SDE engineered devices. This paper provides new opportunities for realizing future ULV/low-power analog design with FinFETs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a systematic analysis on the impact of source-drain engineering using gate

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this letter, we propose a novel design methodology for engineering source/drain extension (SDE) regions to simultaneously improve intrinsic dc gain (A(vo)) and cutoff frequency (f(T)) of 25-nm gate-length FinFETs operated at low drain-current (I-ds = 10 mu A/mu m). SDE region optimization in 25-nm FinFETs results in exceptionally high values of Avo (similar to 45 dB) and f(T) (similar to 70 GHz), which is nearly 2.5 times greater when compared to devices designed with abrupt SDE regions. The influence of spacer width, lateral source/drain doping gradient, and the spacer-to-gradient ratio on key analog figures of merit is examined in detail. This letter provides new opportunities for realizing future low-voltage/low-power analog design with nanoscale SDE-engineered FinFETs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Double gate fully depleted silicon-on-insulator (DGSOI) is recognized as a possible solution when the physical gate length L-G reduces to 25nm for the 65nm node on the ITRS CMOS roadmap. In this paper, scaling guidelines are introduced to optimally design a nanoscale DGSOI. For this reason, the sensitivity of gain, f(T) and f(max) to each of the key geometric and technological parameters of the DGSOI are assessed and quantified using MixedMode simulation. The impact of the parasitic resistance and capacitance on analog device performance is systematically analysed. By comparing analog performance with a single gate (SG), it has been found that intrinsic gain in DGSOI is 4 times higher but its fT was found to be comparable to that of SGSOI at different regions of transistor operation. However, the extracted fmax in SG SOI was higher (similar to 40%) compared to DGSOI due to its lower capacitance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comparison of dc characteristics of fully depleted double-gate (DG) MOSFETs with respect to low-power circuit applications and device scaling has been performed by two-dimensional device simulation. Three different DG MOSFET structures including a conventional N+ polysilicon gate device with highly doped Si layer, an asymmetrical P+/N+ polysilicon gate device with low doped Si layer and a midgap metal gate device with low doped Si layer have been analysed. It was found that DG MOSFET with mid-gap metal, gates yields the best dc parameters for given off-state drain leakage current and highest immunity to the variation of technology parameters (gate length, gate oxide thickness and Si layer thickness). It is also found that an asymmetrical P+/N+ polysilicon gate DG MOSFET design offers comparable dc characteristics, but better parameter immunity to technology tolerances than a conventional DG MOSFET. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present results of a study into the performance of a variety of different image transform-based feature types for speaker-independent visual speech recognition of isolated digits. This includes the first reported use of features extracted using a discrete curvelet transform. The study will show a comparison of some methods for selecting features of each feature type and show the relative benefits of both static and dynamic visual features. The performance of the features will be tested on both clean video data and also video data corrupted in a variety of ways to assess each feature type's robustness to potential real-world conditions. One of the test conditions involves a novel form of video corruption we call jitter which simulates camera and/or head movement during recording.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of the external circuit on plasma instabilities in all inductive plasma source are investigated. The instabilities are found to be asymmetric with respect to the circuit input impedance. A simplified model of the antenna-plasnia coupling provides an explanation of the asymetry.