86 resultados para Lab-on-a-chip


Relevância:

30.00% 30.00%

Publicador:

Resumo:

NanoStreams is a consortium project funded by the European Commission under its FP7 programme and is a major effort to address the challenges of processing vast amounts of data in real-time, with a markedly lower carbon footprint than the state of the art. The project addresses both the energy challenge and the high-performance required by emerging applications in real-time streaming data analytics. NanoStreams achieves this goal by designing and building disruptive micro-server solutions incorporating real-silicon prototype micro-servers based on System-on-Chip and reconfigurable hardware technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: Clinical studies have shown that more than 70% of primary bladder tumours arise in the area around the ureteric orifice. In this study a genomic approach was taken to explore the molecular mechanisms that may influence this phenomenon.

Methods: RNA was isolated from each individual normal ureteric orifice and the dome biopsy from 33 male patients. Equal amounts of the pooled ureteric orifice and dome mRNAs were labelled with Cy3 and Cy5, respectively before hybridising to the gene chip (UniGEM 2.0, Incyte Genomics Inc., Wilmington, Delaware, USA). Results: Significant changes (more than a twofold difference) in gene expression were observed in 3.1% (312) of the 10,176 gene array: 211 genes upregulated and 101 downregulated. Analysis of Cdc25B, TK1, PKM, and PDGFra with RT-PCR supported the reliability of the microarray result. Seladin-1 was the most upregulated gene in the ureteric orifice: 8.3-fold on the microarray and 11.4-fold by real time PCR.

Conclusions: Overall, this study suggests significant altered gene expression between these two anatomically distinct areas of the normal human bladder. Of particular note is Seladin-1, whose significance in cancer is yet to be clarified. Further studies of the genes discovered by this work will help clarify which of these differences influence primary bladder carcinogenesis. (c) 2006 European Association of Urology. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a portable electrochemical instrument capable of real-time in situ detection and automatic identification of heavy metals. The instrument is equipped with an embedded Geographical Position System and is capable of storing the geographical position of the sample under test. Software has been developed to combine pollutant results with geographical position, in order to produce a cartographical presentation of the pollution of an area. The electrochemical instrument provides the facilities found in a traditional lab based instrument in a portable design for on-site measurements. The instrument is capable of detecting lead, cadmium, zinc, nickel, mercury, and copper with good sensitivity and precision. The system is reliable, easy to use, safe, and it may be used in a variety of situations to help environmental assessment and control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of a high-performance IIR (infinite impulse response) digital filter is described. The chip architecture operates on 11-b parallel, two's complement input data with a 12-b parallel two's complement coefficient to produce a 14-b two's complement output. The chip is implemented in 1.5-µm, double-layer-metal CMOS technology, consumes 0.5 W, and can operate up to 15 Msample/s. The main component of the system is a fine-grained systolic array that internally is based on a signed binary number representation (SBNR). Issues addressed include testing, clock distribution, and circuitry for conversion between two's complement and SBNR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chromatin immunoprecipitation (ChIP) allows enrichment of genomic regions which are associated with specific transcription factors, histone modifications, and indeed any other epitopes which are present on chromatin. The original ChIP methods used site-specific PCR and Southern blotting to confirm which regions of the genome were enriched, on a candidate basis. The combination of ChIP with genomic tiling arrays (ChIP-chip) allowed a more unbiased approach to map ChIP-enriched sites. However, limitations of microarray probe design and probe number have a detrimental impact on the coverage, resolution, sensitivity, and cost of whole-genome tiling microarray sets for higher eukaryotes with large genomes. The combination of ChIP with high-throughput sequencing technology has allowed more comprehensive surveys of genome occupancy, greater resolution, and lower cost for whole genome coverage. Herein, we provide a comparison of high-throughput sequencing platforms and a survey of ChIP-seq analysis tools, discuss experimental design, and describe a detailed ChIP-seq method.Chromatin immunoprecipitation (ChIP) allows enrichment of genomic regions which are associated with specific transcription factors, histone modifications, and indeed any other epitopes which are present on chromatin. The original ChIP methods used site-specific PCR and Southern blotting to confirm which regions of the genome were enriched, on a candidate basis. The combination of ChIP with genomic tiling arrays (ChIP-chip) allowed a more unbiased approach to map ChIP-enriched sites. However, limitations of microarray probe design and probe number have a detrimental impact on the coverage, resolution, sensitivity, and cost of whole-genome tiling microarray sets for higher eukaryotes with large genomes. The combination of ChIP with high-throughput sequencing technology has allowed more comprehensive surveys of genome occupancy, greater resolution, and lower cost for whole genome coverage. Herein, we provide a comparison of high-throughput sequencing platforms and a survey of ChIP-seq analysis tools, discuss experimental design, and describe a detailed ChIP-seq method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification of direct nuclear hormone receptor gene targets provides clues to their contribution to both development and cancer progression. Until recently, the identification of such direct target genes has relied on a combination of expression analysis and in silico searches for consensus binding motifs in gene promoters. Consensus binding motifs for transcription factors are often defined using in vitro DNA binding strategies. Such in vitro strategies fail to account for the many factors that contribute significantly to target selection by transcription factors in cells beyond the recognition of these short consensus DNA sequences. These factors include DNA methylation, chromatin structure, posttranslational modifications of transcription factors, and the cooperative recruitment of transcription factor complexes. Chromatin immunoprecipitation (ChIP) provides a means of isolating transcription factor complexes in the context of endogenous chromatin, allowing the identification of direct transcription factor targets. ChIP can be combined with site-specific PCR for candidate binding sites or alternatively with cloning, genomic microarrays or more recently direct high throughput sequencing to identify novel genomic targets. The application of ChIP-based approaches has redefined consensus binding motifs for transcription factors and provided important insights into transcription factor biology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chromatin immunoprecipitation (ChIP) provides a means of enriching DNA associated with transcription factors, histone modifications, and indeed any other proteins for which suitably characterized antibodies are available. Over the years, sequence detection has progressed from quantitative real-time PCR and Southern blotting to microarrays (ChIP-chip) and now high-throughput sequencing (ChIP-seq). This progression has vastly increased the sequence coverage and data volumes generated. This in turn has enabled informaticians to predict the identity of multi-protein complexes on DNA based on the overrepresentation of sequence motifs in DNA enriched by ChIP with a single antibody against a single protein. In the course of the development of high-throughput sequencing, little has changed in the ChIP methodology until recently. In the last three years, a number of modifications have been made to the ChIP protocol with the goal of enhancing the sensitivity of the method and further reducing the levels of nonspecific background sequences in ChIPped samples. In this chapter, we provide a brief commentary on these methodological changes and describe a detailed ChIP-exo method able to generate narrower peaks and greater peak coverage from ChIPped material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monitoring and tracking of IP traffic flows are essential for network services (i.e. packet forwarding). Packet header lookup is the main part of flow identification by determining the predefined matching action for each incoming flow. In this paper, an improved header lookup and flow rule update solution is investigated. A detailed study of several well-known lookup algorithms reveals that searching individual packet header field and combining the results achieve high lookup speed and flexibility. The proposed hybrid lookup architecture is comprised of various lookup algorithms, which are selected based on the user applications and system requirements.