102 resultados para Ldl-cholesterol
Resumo:
Varying intensities of nurse-mediated health education advice were administered to subjects over a three-month period. Mean serum total cholesterol was calculated for each group at the outset and completion of the study. A multidimensional health locus of control (MHLC) scales questionnaire was self-completed by subjects at the outset. A highly significant association between internality and reduction in serum total cholesterol in the high-intensity intervention group was observed. The completion of a MHLC scale questionnaire may assist health professionals in identifying which subjects may most benefit from high-intensity health education advice when raised serum total cholesterol is prevalent.
Resumo:
Macrophage cholesterol homeostasis is a key process involved in the initiation and progression of atherosclerosis. Peroxisome proliferator-activated receptors (PPARs) regulate the transcription of the genes involved in cholesterol homeostasis and thus represent an important therapeutic target in terms of reducing atherosclerosis. Conjugated linoleic acid (CLA) is a potent anti-atherogenic dietary fatty acid in animal models of atherosclerosis and is capable of activating PPARs in vitro and in vivo. Therefore, this study examined whether the anti-atherogenic effects of CLA in vivo could be ascribed to altered cholesterol homeostasis in macrophages and macrophage derived foam cells. Of several genes that regulate cholesterol homeostasis investigated, CLA had most effect on the class B scavenger receptor CD36. The cis-9,trans-11 CLA (c9,t11-CLA) and trans-10,cis-12 CLA (t10,c12-CLA) isomers augmented CD36 mRNA expression (P
Effects of modified LDL and HDL on retinal pigment epithelial cells: a role in diabetic retinopathy?
Resumo:
Aims/hypothesis: Blood–retina barrier leakage in diabetes results in extravasation of plasma lipoproteins. Intra-retinal modified LDLs have been implicated in diabetic retinopathy (DR), but their effects on retinal pigment epithelial (RPE) cells and the added effects of extravasated modified HDLs are unknown.
Methods: In human retinas from individuals with and without diabetes and DR, immunohistochemistry was used to detect ApoB, ApoA1 and endoplasmic reticulum (ER) stress markers. In cell culture, human RPE cells were treated with native LDL (N-LDL) or heavily-oxidised glycated LDL (HOG-LDL) with or without pretreatment with native HDL (N-HDL) or heavilyoxidised glycated HDL (HOG-HDL). Cell viability, oxidative stress, ER stress, apoptosis and autophagy were assessed by Cell Counting Kit-8 assay, dichlorofluorescein assay, western blotting, immunofluorescence and TUNEL assay. In separate
experiments, RPE cells were treated with lipid oxidation products, 7-ketocholesterol (7-KC, 5–40 µmol/l) or 4-hydroxynonenal (4-HNE, 5–80 µmol/l), with or without pretreatment with N-HDL or HOG-HDL.
Results: ApoB, ApoA1 staining and RPE ER stress were increased in the presence of DR. HOG-LDL but not N-LDL significantly decreased RPE cell viability and increased reactive oxygen species generation, ER stress, apoptosis and autophagy. Similarly, 4-HNE and 7-KC decreased viability and induced ER stress. Pretreatment with N-HDL mitigated these effects, whereas HOG-HDL was less effective by most, but not all, measures.
Conclusions/interpretation: In DR, extravascular modified LDL may promote RPE injury through oxidative stress, ER stress, autophagy and apoptosis. N-HDL has protective effects, but HOG-HDL is less effective. Extravasation and modification of HDL may modulate the injurious effects of extravasated modified LDL on the retinal pigment epithelium.
Resumo:
Aims/hypothesis: In previous studies we have shown that extravasated, modified LDL is associated with pericyte loss, an early feature of diabetic retinopathy (DR). Here we sought to determine detailed mechanisms of this LDLinduced pericyte loss.
Methods: Human retinal capillary pericytes (HRCP) were exposed to ‘highly-oxidised glycated’ LDL (HOG-LDL) (a model of extravasated and modified LDL) and to 4-hydroxynonenal or 7-ketocholesterol (components of oxidised LDL), or to native LDL for 1 to 24 h with or without 1 h of pretreatment with inhibitors of the following: (1) the scavenger receptor (polyinosinic acid); (2) oxidative stress (N-acetyl cysteine); (3) endoplasmic reticulum (ER) stress (4-phenyl butyric acid); and (4) mitochondrial dysfunction (cyclosporin A). Oxidative stress, ER stress, mitochondrial dysfunction, apoptosis and autophagy were assessed using techniques including western blotting, immunofluorescence, RT-PCR, flow cytometry and TUNEL assay. To assess the relevance of the results in vivo, immunohistochemistry was used to detect the ER stress chaperon, 78 kDa glucose-regulated protein, and the ER sensor, activating transcription factor 6, in retinas from a mouse model of DR that mimics exposure of the retina to elevated glucose and elevated LDL levels, and in retinas from human participants with and without diabetes and DR.
Results: Compared with native LDL, HOG-LDL activated oxidative and ER stress in HRCP, resulting in mitochondrial dysfunction, apoptosis and autophagy. In a mouse model of diabetes and hyperlipidaemia (vs mouse models of either condition alone), retinal ER stress was enhanced. ER stress was also enhanced in diabetic human retina and correlated with the severity of DR.
Conclusions/interpretation: Cell culture, animal, and human data suggest that oxidative stress and ER stress are induced by modified LDL, and are implicated in pericyte loss in DR.
Resumo:
We previously showed that extravasated, modified LDL is implicated in pericyte loss in diabetic retinopathy (DR). Here, we investigate whether modified LDL induces apoptosis in retinal Müller glial cells.
Resumo:
Dyslipidemia is an important risk factor for cardiovascular complications in persons with diabetes. Low-density lipoprotein-cholesterol (LDL-C) is the 'cornerstone' for assessment of lipoprotein-associated risk. However, LDL-C levels do not reflect the classic 'diabetic dyslipidemia' of hypertriglyceridemia and low high-density lipoprotein-cholesterol (HDL-C). Measurements of plasma apolipoprotein B100 concentrations and non-HDL-C may improve the definition of dyslipidemia. Statins, nicotinic acid and fibrates have roles in treating dyslipidemia in diabetes. Residual risk (i.e. risk that persists after correction of 'conventional' plasma lipoprotein abnormalities) is a new concept in the role of dyslipidemia in the pathogenesis of diabetic vascular complications. For example, regardless of plasma levels, lipoprotein extravasation through a leaking retinal blood barrier and subsequent modification may be crucial in the development of diabetic retinopathy. The current approach to the management of dyslipidemia in diabetes is briefly summarized, followed by a discussion of new concepts of residual risk and emerging lipoprotein-related mechanisms for vascular disease in diabetes.
Resumo:
Microalbuminuria is a common diagnosis in the clinical care of patients with type 1 diabetes mellitus. Long-term outcomes after the development of microalbuminuria are variable.
Resumo:
Strawberries have been reported to be potent antioxidants and reduce cardiovascular risk factors, such as elevated blood pressure, hyperglycemia, dyslipidemia, and inflammation in limited studies. We hypothesized that freeze-dried strawberry supplementation will improve blood pressure, impaired glucose, dyslipidemia, or circulating adhesion molecules in obese subjects with metabolic syndrome, thereby lowering cardiovascular risk factors in these subjects. Twenty-seven subjects with metabolic syndrome (2 males and 25 females; body mass index, 37.5 +/- 2.15 kg/m(2); age, 47.0 +/- 3.0 years [means +/- SE]) consumed 4 cups of freeze-dried strawberry beverage (50 g freeze-dried strawberries approximately 3 cups fresh strawberries) or equivalent amounts of fluids (controls, 4 cups of water) daily for 8 weeks in a randomized controlled trial. Anthropometrics and blood pressure measurements, assessment of dietary intakes, and fasting blood draws were conducted at screen and 8 weeks of the study. Strawberry supplementation significantly decreased total and low-density lipoprotein cholesterol (5.8 +/- 0.2 to 5.2 +/- 0.2 mmol/L and 3.5 +/- 0.2 to 3.1 +/- 0.1 mmol/L, respectively [means +/- SE], P <.05) and small low-density lipoprotein particles using nuclear magnetic resonance-determined lipoprotein subclass profile vs controls at 8 weeks (794.6 +/- 94.0 to 681.8 +/- 86.0 nmol/L [means +/- SE], P <.05). Strawberry supplementation further decreased circulating levels of vascular cell adhesion molecule-1 vs controls at 8 weeks (272.7 +/- 17.4 to 223.0 +/- 14.0 ng/mL [means +/- SE], P <.05). Serum glucose, triglycerides, high-density lipoprotein cholesterol, blood pressure, and waist circumference were not affected. Thus, short-term freeze-dried strawberry supplementation improved selected atherosclerotic risk factors, including dyslipidemia and circulating adhesion molecules in subjects with metabolic syndrome, and these results need confirmation in future trials.
Resumo:
Immune complexes containing modified LDL (LDL-IC) and NMR-determined Total LDL particle concentrations are significantly associated with intima-media thickness (IMT). We analyzed the associations between concentrations of NMR-determined lipoprotein subclasses and LDL-IC in the DCCT/EDIC cohort. LDL-IC concentrations in women and men of the DCCT/EDIC cohort did not differ significantly and were positively associated with Total LDL particle concentrations in men and women (r=0.34, r=0.32, respectively; P
Resumo:
The oxidation of LDLs is considered a key step in the development of atherosclerosis. How LDL oxidation contributes to atherosclerosis remains poorly defined. Here we report that oxidized and glycated LDL (HOG-LDL) causes aberrant endoplasmic reticulum (ER) stress and that the AMP-activated protein kinase (AMPK) suppressed HOG-LDL-triggered ER stress in vivo.
Resumo:
Strawberry flavonoids are potent antioxidants and anti-inflammatory agents that have been shown to reduce cardiovascular disease risk factors in prospective cohort studies. Effects of strawberry supplementation on metabolic risk factors have not been studied in obese populations. We tested the hypothesis that freeze-dried strawberry powder (FSP) will lower fasting lipids and biomarkers of oxidative stress and inflammation at four weeks compared to baseline. We also tested the tolerability and safety of FSP in subjects with metabolic syndrome. FSP is a concentrated source of polyphenolic flavonoids, fiber and phytosterols.
Resumo:
Pericyte loss is a cardinal feature of early diabetic retinopathy. We previously reported that highly oxidized-glycated low density lipoprotein (HOG-LDL) induces pericyte apoptosis in vitro. In this study, we investigated the role of the mitogen-activated protein kinase (MAPK) signaling pathways in HOG-LDL-induced apoptosis in human pericytes.
Resumo:
Purpose: The pathogenesis of diabetic retinopathy (DR) is not fully understood. Clinical studies suggest that dyslipidemia is associated with the initiation and progression of DR. However, no direct evidence supports this theory.
Methods: Immunostaining of apolipoprotein B100 (ApoB100, a marker of low-density lipoprotein [LDL]), macrophages, and oxidized LDL was performed in retinal sections from four different groups of subjects: nondiabetic, type 2 diabetic without clinical retinopathy, diabetic with moderate nonproliferative diabetic retinopathy (NPDR), and diabetic with proliferative diabetic retinopathy (PDR). Apoptosis was characterized using the TUNEL assay. In addition, in cell culture studies using in vitro-modi?ed LDL, the induction of apoptosis by heavily oxidized-glycated LDL (HOG-LDL) in human retinal capillary
pericytes (HRCPs) was assessed.
Results: Intraretinal immuno?uorescence of ApoB100 increased with the severity of DR. Macrophages were prominent only in sections from diabetic patients with PDR. Merged images revealed that ApoB100 partially colocalized with macrophages. Intraretinal oxidized LDL was absent in nondiabetic subjects but present in all three diabetic groups, increasing with the severity of DR. TUNEL-positive cells were present in retinas from diabetic subjects but absent in those from nondiabetic subjects. In cell culture, HOG-LDL induced the activation of caspase, mitochondrial dysfunction, and apoptosis in
HRCPs.
Conclusions: These ?ndings suggest a potentially important role for extravasated, modi?ed LDL in promoting DR by promoting apoptotic pericyte loss.
Resumo:
Aims/hypothesis: Matrix metalloproteinases (MMPs) and their natural inhibitors, tissue inhibitor of metalloproteinases (TIMPs), regulate important biological processes including the homeostasis of the extracellular matrix, proteolysis of cell surface proteins, proteinase zymogen activation, angiogenesis and inflammation. Studies have shown that their balance is altered in retinal microvascular tissues in diabetes. Since LDLs modified by oxidation/glycation are implicated in the pathogenesis of diabetic vascular complications, we examined the effects of modified LDL on the gene expression and protein production of MMPs and TIMPs in retinal pericytes. Methods: Quiescent human retinal pericytes were exposed to native LDL (N-LDL), glycated LDL (G-LDL) and heavily oxidised and glycated LDL (HOG-LDL) for 24 h. We studied the expression of the genes encoding MMPs and TIMPs mRNAs by analysis of microarray data and quantitative PCR, and protein levels by immunoblotting and ELISA. Results: Microarray analysis showed that MMP1, MMP2, MMP11, MMP14 and MMP25 and TIMP1, TIMP2, TIMP3 and TIMP4 were expressed in pericytes. Of these, only TIMP3 mRNA showed altered regulation, being expressed at significantly lower levels in response to HOG- vs N-LDL. Quantitative PCR and immunoblotting of cell/matrix proteins confirmed the reduction in TIMP3 mRNA and protein in response to HOG-LDL. In contrast to cellular TIMP3 protein, analysis of secreted TIMP1, TIMP2, MMP1 and collagenase activity indicated no changes in their production in response to modified LDL. Combined treatment with N- and HOG-LDL restored TIMP3 mRNA expression to a level comparable with that after N-LDL alone. Conclusions/interpretation: Among the genes encoding for MMPs and TIMPs expressed in retinal pericytes, TIMP3 is uniquely regulated by HOG-LDL. Reduced TIMP3 expression might contribute to microvascular abnormalities in diabetic retinopathy. © 2007 Springer-Verlag.