83 resultados para double-coating cathode


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of source/drain engineering on the performance of a six-transistor (6-T) static random access memory (SRAM) cell, based on 22 nm double-gate (DG) SOI MOSFETs, has been analyzed using mixed-mode simulation, for three different circuit topologies for low voltage operation. The trade-offs associated with the various conflicting requirements relating to read/write/standby operations have been evaluated comprehensively in terms of eight performance metrics, namely retention noise margin, static noise margin, static voltage/current noise margin, write-ability current, write trip voltage/current and leakage current. Optimal design parameters with gate-underlap architecture have been identified to enhance the overall SRAM performance, and the influence of parasitic source/drain resistance and supply voltage scaling has been investigated. A gate-underlap device designed with a spacer-to-straggle (s/sigma) ratio in the range 2-3 yields improved SRAM performance metrics, regardless of circuit topology. An optimal two word-line double-gate SOI 6-T SRAM cell design exhibits a high SNM similar to 162 mV, I-wr similar to 35 mu A and low I-leak similar to 70 pA at V-DD = 0.6 V, while maintaining SNM similar to 30% V-DD over the supply voltage (V-DD) range of 0.4-0.9 V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

.In this letter, we demonstrate for the first time that gate misalignment is not a critical limiting factor for low voltage operation in gate-underlap double gate (DG) devices. Our results show that underlap architecture significantly extends the tolerable limit of gate misalignment in 25 nm devices. DG MOSFETs with high degree of gate misalignment and optimal gate-underlap design can perform comparably or even better than self-aligned nonunderlap devices. Results show that spacer-to-straggle (s/sigma) ratio, a key design parameter for underlap devices, should be within the range of 2.3-3.0 to accommodate back gate misalignment. These results are very significant as the stringent process control requirements for achieving self-alignment in nanoscale planar DG MOSFETs are considerably relaxed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, by investigating the influence of source/drain extension region engineering (also known as gate-source/drain underlap) in nanoscale planar double gate (DG) SOI MOSFETs, we offer new insights into the design of future nanoscale gate-underlap DG devices to achieve ITRS projections for high performance (HP), low standby power (LSTP) and low operating power (LOP) logic technologies. The impact of high-kappa gate dielectric, silicon film thickness, together with parameters associated with the lateral source/drain doping profile, is investigated in detail. The results show that spacer width along with lateral straggle can not only effectively control short-channel effects, thus presenting low off-current in a gate underlap device, but can also be optimized to achieve lower intrinsic delay and higher on-off current ratio (I-on/I-off). Based on the investigation of on-current (I-on), off-current (I-off), I-on/I-off, intrinsic delay (tau), energy delay product and static power dissipation, we present design guidelines to select key device parameters to achieve ITRS projections. Using nominal gate lengths for different technologies, as recommended from ITRS specification, optimally designed gate-underlap DG MOSFETs with a spacer-to-straggle (s/sigma) ratio of 2.3 for HP/LOP and 3.2 for LSTP logic technologies will meet ITRS projection. However, a relatively narrow range of lateral straggle lying between 7 to 8 nm is recommended. A sensitivity analysis of intrinsic delay, on-current and off-current to important parameters allows a comparative analysis of the various design options and shows that gate workfunction appears to be the most crucial parameter in the design of DG devices for all three technologies. The impact of back gate misalignment on I-on, I-off and tau is also investigated for optimized underlap devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper proposes for the first time, a novel design methodology based on the optimization of source/drain extension (SDE) regions to significantly improve the trade-off between intrinsic voltage gain (A(vo)) and cut-off frequency (f(T)) in nanoscale double gate (DG) devices. Our results show that an optimally designed 25 nm gate length SDE region engineered DG MOSFET operating at drain current of 10 mu A/mu m, exhibits up to 65% improvement in intrinsic voltage gain and 85% in cut-off frequency over devices designed with abrupt SIDE regions. The influence of spacer width, lateral source/drain doping gradient and symmetric as well as asymmetrically designed SDE regions on key analog figures of merit (FOM) such as transconductance (g(m)), transconductance-to-current ratio (g(m)/I-ds), Early voltage (V-EA), output conductance (g(ds)) and gate capacitances are examined in detail. The present work provides new opportunities for realizing future low-voltage/low-power analog circuits with nanoscale SDE engineered DG MOSFETs. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a systematic analysis on the impact of source-drain engineering using gate

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the analogue performance of a 65 nm node double gate Sol (DGSOI) is qualitatively investigated using MixedMode simulation. The intrinsic resistance of the device is optimised by evaluating the impact of the source/drain engineering using variation of spacers and doping profile on the RF key figures of merit such as f(T), and f(MAX). It is evident that longer spacers, which approach the length of the gate offer better RF performance irrespective of the profile as long as the doping gradient at the gate edge is <7 nm/decade. Analytical expressions, which reflect the dependence of f(T), and fMAX on extrinsic source, drain and gate resistances R-S, R-D and R-G have been derived. While R-D and R-S have equal effect on f(T), R-D appears to be more influential than R-S in reducing f(MAX). The sensitivity of f(MAX) to R-S and R-D. has been shown to be greater than to R-G. (c) 2006 Elsevier Ltd. All rights reserved.