116 resultados para bounded rationality
Resumo:
The two families of fluorescent PET (photoinduced electron transfer) sensors (1-9) show that the effective proton density near the surface of several micelle membranes changes over 2-3 orders of magnitude as the microlocation of the sensor (with respect to the membrane) is altered via hydrophobic tuning.
Resumo:
Learning Bayesian networks with bounded tree-width has attracted much attention recently, because low tree-width allows exact inference to be performed efficiently. Some existing methods [12, 14] tackle the problem by using k-trees to learn the optimal Bayesian network with tree-width up to k. In this paper, we propose a sampling method to efficiently find representative k-trees by introducing an Informative score function to characterize the quality of a k-tree. The proposed algorithm can efficiently learn a Bayesian network with tree-width at most k. Experiment results indicate that our approach is comparable with exact methods, but is much more computationally efficient.
Resumo:
Bounding the tree-width of a Bayesian network can reduce the chance of overfitting, and allows exact inference to be performed efficiently. Several existing algorithms tackle the problem of learning bounded tree-width Bayesian networks by learning from k-trees as super-structures, but they do not scale to large domains and/or large tree-width. We propose a guided search algorithm to find k-trees with maximum Informative scores, which is a measure of quality for the k-tree in yielding good Bayesian networks. The algorithm achieves close to optimal performance compared to exact solutions in small domains, and can discover better networks than existing approximate methods can in large domains. It also provides an optimal elimination order of variables that guarantees small complexity for later runs of exact inference. Comparisons with well-known approaches in terms of learning and inference accuracy illustrate its capabilities.
Resumo:
We discuss some necessary and some sufficient conditions for an elementary operator x↦∑ni=1aixbi on a Banach algebra A to be spectrally bounded. In the case of length three, we obtain a complete characterisation when A acts irreducibly on a Banach space of dimension greater than three.
Resumo:
Learning Bayesian networks with bounded tree-width has attracted much attention recently, because low tree-width allows exact inference to be performed efficiently. Some existing methods \cite{korhonen2exact, nie2014advances} tackle the problem by using $k$-trees to learn the optimal Bayesian network with tree-width up to $k$. Finding the best $k$-tree, however, is computationally intractable. In this paper, we propose a sampling method to efficiently find representative $k$-trees by introducing an informative score function to characterize the quality of a $k$-tree. To further improve the quality of the $k$-trees, we propose a probabilistic hill climbing approach that locally refines the sampled $k$-trees. The proposed algorithm can efficiently learn a quality Bayesian network with tree-width at most $k$. Experimental results demonstrate that our approach is more computationally efficient than the exact methods with comparable accuracy, and outperforms most existing approximate methods.
Resumo:
We present a method for learning treewidth-bounded Bayesian networks from data sets containing thousands of variables. Bounding the treewidth of a Bayesian network greatly reduces the complexity of inferences. Yet, being a global property of the graph, it considerably increases the difficulty of the learning process. Our novel algorithm accomplishes this task, scaling both to large domains and to large treewidths. Our novel approach consistently outperforms the state of the art on experiments with up to thousands of variables.
Resumo:
We present results from three-dimensional protein folding simulations in the HP-model on ten benchmark problems. The simulations are executed by a simulated annealing-based algorithm with a time-dependent cooling schedule. The neighbourhood relation is determined by the pull-move set. The results provide experimental evidence that the maximum depth D of local minima of the underlying energy landscape can be upper bounded by D < n(2/3). The local search procedure employs the stopping criterion (In/delta)(D/gamma) where m is an estimation of the average number of neighbouring conformations, gamma relates to the mean of non-zero differences of the objective function for neighbouring conformations, and 1-delta is the confidence that a minimum conformation has been found. The bound complies with the results obtained for the ten benchmark problems. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
It is proved that for any separable infinite dimensional Banach space X, there is a bounded linear operator T on X such that T satisfies the Kitai criterion. The proof is based on a quasisimilarity argument and on showing that I + T satisfies the Kitai criterion for certain backward weighted shifts T.
Resumo:
It is shown, for a bounded weighted bilateral shift T acting on l(p)(Z), and for 1
Resumo:
A complex number lambda is called an extended eigenvalue of a bounded linear operator T on a Banach space B if there exists a non-zero bounded linear operator X acting on B such that XT = lambda TX. We show that there are compact quasinilpotent operators on a separable Hilbert space, for which the set of extended eigenvalues is the one-point set {1}.
Resumo:
We construct a bounded function $H : l_2\times l_2 \to R$ with continuous Frechet derivative such that for any $q_0\in l_2$ the Cauchy problem $\dot p= - {\partial H\over\partial q}$, $\dot q={\partial H\over\partial p}$, $p(0) = 0$, q(0) = q_0$ has no solutions in any neighborhood of zero in R.
Resumo:
We construct a countable-dimensional Hausdorff locally convex topological vector space $E$ and a stratifiable closed linear subspace $F$ subset of $E$ such that any linear extension operator from $C_b(F)$ to $C_b(E)$ is unbounded (here $C_b(X)$ stands for the Banach space of continuous bounded real-valued functions on $X$).