On linear extension operators
Data(s) |
01/04/2002
|
---|---|
Resumo |
We construct a countable-dimensional Hausdorff locally convex topological vector space $E$ and a stratifiable closed linear subspace $F$ subset of $E$ such that any linear extension operator from $C_b(F)$ to $C_b(E)$ is unbounded (here $C_b(X)$ stands for the Banach space of continuous bounded real-valued functions on $X$). |
Identificador |
http://www.scopus.com/inward/record.url?scp=0035998458&partnerID=8YFLogxK |
Idioma(s) |
eng |
Direitos |
info:eu-repo/semantics/restrictedAccess |
Fonte |
Shkarin , S 2002 , ' On linear extension operators ' Russian Journal of Mathematical Physics , vol 9 , no. 2 , pp. 188-197 . |
Palavras-Chave | #/dk/atira/pure/subjectarea/asjc/2600/2610 #Mathematical Physics #/dk/atira/pure/subjectarea/asjc/3100 #Physics and Astronomy(all) #/dk/atira/pure/subjectarea/asjc/3100/3109 #Statistical and Nonlinear Physics |
Tipo |
article |