On linear extension operators


Autoria(s): Shkarin, Stanislav
Data(s)

01/04/2002

Resumo

We construct a countable-dimensional Hausdorff locally convex topological vector space $E$ and a stratifiable closed linear subspace $F$ subset of $E$ such that any linear extension operator from $C_b(F)$ to $C_b(E)$ is unbounded (here $C_b(X)$ stands for the Banach space of continuous bounded real-valued functions on $X$).

Identificador

http://pure.qub.ac.uk/portal/en/publications/on-linear-extension-operators(2bb5de4d-0cb2-4d3a-8d16-464c6a597780).html

http://www.scopus.com/inward/record.url?scp=0035998458&partnerID=8YFLogxK

Idioma(s)

eng

Direitos

info:eu-repo/semantics/restrictedAccess

Fonte

Shkarin , S 2002 , ' On linear extension operators ' Russian Journal of Mathematical Physics , vol 9 , no. 2 , pp. 188-197 .

Palavras-Chave #/dk/atira/pure/subjectarea/asjc/2600/2610 #Mathematical Physics #/dk/atira/pure/subjectarea/asjc/3100 #Physics and Astronomy(all) #/dk/atira/pure/subjectarea/asjc/3100/3109 #Statistical and Nonlinear Physics
Tipo

article