Compact operators without extended eigenvalues
Data(s) |
01/08/2007
|
---|---|
Resumo |
A complex number lambda is called an extended eigenvalue of a bounded linear operator T on a Banach space B if there exists a non-zero bounded linear operator X acting on B such that XT = lambda TX. We show that there are compact quasinilpotent operators on a separable Hilbert space, for which the set of extended eigenvalues is the one-point set {1}. |
Identificador |
http://www.scopus.com/inward/record.url?scp=34147129686&partnerID=8YFLogxK |
Idioma(s) |
eng |
Direitos |
info:eu-repo/semantics/restrictedAccess |
Fonte |
Shkarin , S 2007 , ' Compact operators without extended eigenvalues ' Journal of Mathematical Analysis and its Applications , vol 332 , no. 1 , pp. 455-462 . |
Palavras-Chave | #/dk/atira/pure/subjectarea/asjc/2600/2603 #Analysis #/dk/atira/pure/subjectarea/asjc/2600/2604 #Applied Mathematics |
Tipo |
article |