Compact operators without extended eigenvalues


Autoria(s): Shkarin, Stanislav
Data(s)

01/08/2007

Resumo

A complex number lambda is called an extended eigenvalue of a bounded linear operator T on a Banach space B if there exists a non-zero bounded linear operator X acting on B such that XT = lambda TX. We show that there are compact quasinilpotent operators on a separable Hilbert space, for which the set of extended eigenvalues is the one-point set {1}.

Identificador

http://pure.qub.ac.uk/portal/en/publications/compact-operators-without-extended-eigenvalues(d2f38a52-9728-4a5a-863f-557fdf435709).html

http://www.scopus.com/inward/record.url?scp=34147129686&partnerID=8YFLogxK

Idioma(s)

eng

Direitos

info:eu-repo/semantics/restrictedAccess

Fonte

Shkarin , S 2007 , ' Compact operators without extended eigenvalues ' Journal of Mathematical Analysis and its Applications , vol 332 , no. 1 , pp. 455-462 .

Palavras-Chave #/dk/atira/pure/subjectarea/asjc/2600/2603 #Analysis #/dk/atira/pure/subjectarea/asjc/2600/2604 #Applied Mathematics
Tipo

article