82 resultados para Plasmonic circuitry
Resumo:
In mixed signal integrated circuits noise from the digital circuitry can upset the sensitive analogue circuitry. The Faraday cage structure reported here is based on the unique ground plane SOI technology developed some of the authors. The suppression of crosstalk achieved is an order of magnitude greater than that previously published for frequencies up to 10 GHz. The significance of the technology will be even greater as the operating frequency is increased. This collaborative EPSRC project was judge as tending to outstanding.
Resumo:
When operated with a metallic tip and sample the scanning tunnelling microscope constitutes a nanoscale, plasmonic light source yielding broadband emission up to a photon energy determined by the applied bias. The emission is due to tunnelling electron excitation and subsequent radiative decay of localized plasmon modes, which can be on the lateral scale of a single metal grain (similar to 25 nm) or less. For a Au-tip/Au-polycrystalline sample under ambient conditions it is found that the intensity and spectral content of the emitted light are not dependent on the lateral grain dimension, but are predominantly determined by the tip geometry. However, the intensity increases strongly with increasing film thickness (grain depth) up to 20-25 nm or approximately the skin depth of the Au film. Photon maps can show less emissive grains and two classes of this occurrence are distinguished. The first is geometrical in origin - a double-tip structure in this case - while the second is due to a contamination-induced lowering of the local work function that causes the tunnel gap to increase. It is suggested that differences in work-function lowering between grains presenting different crystalline facets, combined with an exponential decay in emitted light intensity with tip - sample distance, leads to grain contrast. These results are relevant to tip-enhanced Raman scattering and the fabrication of micro/nano-scale planar, light-emitting tunnel devices.
Resumo:
Nonlinear optical transmission through periodically nanostructured metal films (surface-plasmon polaritonic crystals) has been studied. The surface polaritonic crystals have been coated with a nonlinear polymer. The optical transmission of such nanostructures has been shown to depend on the control-light illumination conditions. The resonant transmission exhibits bistable behavior with the control-light intensity. The bistability is different at different resonant signal wavelengths and for different wavelengths of the control light. The effect is explained by the strong sensitivity of the surface-plasmon mode resonances at the signal wavelength to the surrounding dielectric environment and the electromagnetic field enhancement due to plasmonic excitations at the controlled light wavelengths.
Resumo:
Controlling coherent electromagnetic interactions in molecular systems is a problem of both fundamental interest and important applicative potential in the development of photonic and opto-electronic devices. The strength of these interactions determines both the absorption and emission properties of molecules coupled to nanostructures, effectively governing the optical properties of such a composite metamaterial. Here we report on the observation of strong coupling between a plasmon supported by an assembly of oriented gold nanorods (ANR) and a molecular exciton. We show that the coupling is easily engineered and is deterministic as both spatial and spectral overlap between the plasmonic structure and molecular aggregates are controlled. We think that these results in conjunction with the flexible geometry of the ANR are of potential significance to the development of plasmonic molecular devices.
Resumo:
Spectral dispersion of light on a finite-size surface plasmon polaritonic (SPP) crystal has been studied. The angular wavelength separation of one or more orders of magnitude higher than in other state-of-the-art wavelength-splitting devices available to date has been demonstrated. The two-stage process is responsible for the dispersion value, which involves conversion of the incident light into SPP Bloch modes of a nanostructure followed by the SPP Bloch waves refraction at the SPP crystal boundary. The high spectral dispersion achievable in plasmonic devices may be useful for integrated high-resolution spectroscopy in nanophotonic, optical communication and lab-on-a-chip applications.
Resumo:
A methodology for rapid silicon design of biorthogonal wavelet transform systems has been developed. This is based on generic, scalable architectures for the forward and inverse wavelet filters. These architectures offer efficient hardware utilisation by combining the linear phase property of biorthogonal filters with decimation and interpolation. The resulting designs have been parameterised in terms of types of wavelet and wordlengths for data and coefficients. Control circuitry is embedded within these cores that allows them to be cascaded for any desired level of decomposition without any interface logic. The time to produce silicon designs for a biorthogonal wavelet system is only the time required to run synthesis and layout tools with no further design effort required. The resulting silicon cores produced are comparable in area and performance to hand-crafted designs. These designs are also portable across a range of foundries and are suitable for FPGA and PLD implementations.
Resumo:
In Run Time Reconfiguration (RTR) systems, the amount of reconfiguration is considerable when compared to the circuit changes implemented. This is because reconfiguration is not considered as part of the design flow. This paper presents a method for reconfigurable circuit design by modeling the underlying FPGA reconfigurable circuitry and taking it into consideration in the system design. This is demonstrated for an image processing example on the Xilinx Virtex FPGA.
Resumo:
It has long been believed that resistance training is accompanied by changes within the nervous system that play an important role in the development of strength. Many elements of the nervous system exhibit the potential for adaptation in response to resistance training, including supraspinal centres, descending neural tracts, spinal circuitry and the motor end plate connections between motoneurons and muscle fibres. Yet the specific sites of adaptation along the neuraxis have seldom been identified experimentally, and much of the evidence for neural adaptations following resistance training remains indirect. As a consequence of this current lack of knowledge, there exists uncertainty regarding the manner in which resistance training impacts upon the control and execution of functional movements. We aim to demonstrate that resistance training is likely to cause adaptations to many neural elements that are involved in the control of movement, and is therefore likely to affect movement execution during a wide range of tasks.
Resumo:
In this paper we consider whether the behaviour of the neural circuitry that controls lower limb movements in humans is shaped primarily by the spatiotemporal characteristics of bipedal gait patterns, or by selective pressures that are sensitive to considerations of balance and energetics. During the course of normal locomotion, the full dynamics of the neural circuitry are masked by the inertial properties of the limbs. In the present study, participants executed bipedal movements in conditions in which their feet were either unloaded or subject to additional inertial loads. Two patterns of rhythmic coordination were examined. In the in-phase mode, participants were required to flex their ankles and extend their ankles in synchrony. In the out-of-phase mode, the participants flexed one ankle while extending the other and vice versa. The frequency of movement was increased systematically throughout each experimental trial. All participants were able to maintain both the in-phase and the out-of-phase mode of coordination, to the point at which they could no longer increase their frequency of movement. Transitions between the two modes were not observed, and the stability of the out-of-phase and in-phase modes of coordination was equivalent at all movement frequencies. These findings indicate that, in humans, the behaviour of the neural circuitry underlying coordinated movements of the lower limbs is not constrained strongly by the spatiotemporal symmetries of bipedal gait patterns.
Resumo:
In this article, we present the theory and a design methodology for a unable Quasi-Lumped Quadrature Coupler (QLQC). Because of its topology, the coupler is simply reconfigured by switching the bias of two varactor diodes via a very simple DC bias circuitry. No additional capacitors or inductors are required. A prototype at 3.5 GHz is etched on a 0.130-mm-thick layer substrate with a dielectric material of relative permittivity of 2.22. The simulated and measured scattering parameters are, presented. (c) 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 2219-2222 2009: Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.24526
Resumo:
In this communication we present a novel polarization-agile microstrip antenna design. To dynamically change the polarization state, the radiating patch is fed by a tunable quasi-lumped coupler. The whole structure can be dynamically altered to radiate electromagnetic waves with vertical linear, horizontal linear, right-handed circular or left-handed circular polarization simply by changing the operating mode of the quasi-lumped coupler. Due to its topology the coupler is simply reconfigured by switching the bias of two varactor diodes via a very simple DC bias circuitry: no additional capacitors or inductors are required. A prototype is fabricated with a 0.762-mm-thick upper layer substrate for the radiating element and a 0.130-mm-thick layer substrate for the coupler circuit, both with the same dielectric material relative permittivity of 2.22. The simulated and measured scattering parameters, the axial ratio in circular radiation-mode and the cross-polarization level in linear mode, the gain and the radiation patterns are presented. The agile polarization capabilities of this new antenna, as demonstrated in this communication, underscore its suitability for modern wireless communications in a multi-path propagation environment.
Resumo:
A combined antennas and propagation study has been undertaken with a view to directly improving link conditions for wireless body area networks. Using tissue-equivalent numerical and experimental phantoms representative of muscle tissue at 2.45 GHz, we show that the node to node [S-21] path gain performance of a new wearable integrated antenna (WIA) is up to 9 dB better than a conventional compact Printed-F antenna, both of which are suitable for integration with wireless node circuitry. Overall, the WIA performed extremely well with a measured radiation efficiency of 38% and an impedance bandwidth of 24%. Further benefits were also obtained using spatial diversity, with the WIA providing up to 7.7 dB of diversity gain for maximal ratio combining. The results also show that correlation was lower for a multipath environment leading to higher diversity gain. Furthermore, a diversity implementation with the new antenna gave up to 18 dB better performance in terms of mean power level and there was a significant improvement in level crossing rates and average fade durations when moving from a single-branch to a two-branch diversity system.
Resumo:
A structure comprising a coupled pair of two-dimensional arrays of oblate plasmonic nanoellipsoids in a dielectric host medium is proposed as a superlens in the optical domain for both horizontal and vertical polarizations. By means of simulations it is demonstrated that a structure formed by silver nanoellipsoids is capable of restoring subwavelength features of the object for both polarizations at distances larger than half wavelength. The bandwidth of subwavelength resolution is in all cases very large (above 13%). (C) 2009 Optical Society of America
Resumo:
A novel implementation of a tag sorting circuit for a weighted fair queueing (WFQ) enabled Internet Protocol (IP) packet scheduler is presented. The design consists of a search tree, matching circuitry, and a custom memory layout. It is implemented using 130-nm silicon technology and supports quality of service (QoS) on networks at line speeds of 40 Gb/s, enabling next generation IP services to be deployed.
Resumo:
We analyze the optical properties of plasmonic nanorod metamaterials in the epsilon-near-zero regime and show, both theoretically and experimentally, that the performance of these composites is strongly affected by nonlocal response of the effective permittivity tensor. We provide the evidence of interference between main and additional waves propagating in the room-temperature nanorod metamaterials and develop an analytical description of this phenomenon. Additional waves are present in the majority of low-loss epsilon-near-zero structures and should be explicitly considered when designing applications of epsilon-near-zero composites, as they represent a separate communication channel.