63 resultados para Building Blocks for Creative Practice
Resumo:
Environmental controls on stone decay processes are rapidly changing as a result of changing climate. UKCP09 projections for the 2020s (2010–2039) indicate that over much of the UK seasonality of precipitation will increase. Summer dryness and winter wetness are both set to increase, the latter linked to projected precipitation increases in autumn and spring months. If so, this could increase the time that stone structures remain wet and possibly the depth of moisture penetration, and it appears that building stone in Northern Ireland has already responded through an increased incidence of algal ‘greening’.This paper highlights the need for understanding the effects of climate change through a series of studies of largely sandstone structures. Current and projected climatic trends are therefore considered to have aesthetic, physical and chemical implications that are not currently built into our models of sandstone decay, especially with respect to the role played by deep-seated wetness on sandstone deterioration and decay progression and the feedbacks associated with, for example surface algal growth. In particular,it is proposed that algal biofilms will aid moisture retention and further facilitate moisture and dissolved salt penetration to depth. Thus, whilst the outer surface of stone may continue to experience frequent wetting and drying associated with individual precipitation events, the latter is less likely to be complete, and the interiors of building blocks may only experience wetting/drying in response to seasonal cycling. A possible consequence of deeper salt penetration could be a delay in the onset of surface deterioration,but more rapid and effective retreat once it commences as decay mechanisms ‘tap into a reservoir of deep salt’.
Resumo:
This article introduces the recent sound works of Heidi Fast, a Finnish voice and performance artist. Fast’s creative practice operates between art and philosophy, and articulates several ‘zones of becoming’: what Fast designates as ‘the clinical’, ‘the virtual’ and ‘vocal thought-material’. Using a methodology of routing, the article shows how these zones emerge as aesthetic, ethical and political concerns within Fast’s work. Since 2005, Fast’s sound works have variously taken shape as miniature concerts, social sculptures, imaginary soundscapes and environmental music performances. Drawing upon the writings of theorists who have helped shape her practice, this article argues that Fast uses sound and voice to propose an ‘actualising philosophy’. This philosophy actualises virtualities (unrealised potentials), affecting transformative shifts through tiny mutations in perceptions and behaviours.
Resumo:
The classification of protein structures is an important and still outstanding problem. The purpose of this paper is threefold. First, we utilize a relation between the Tutte and homfly polynomial to show that the Alexander-Conway polynomial can be algorithmically computed for a given planar graph. Second, as special cases of planar graphs, we use polymer graphs of protein structures. More precisely, we use three building blocks of the three-dimensional protein structure-alpha-helix, antiparallel beta-sheet, and parallel beta-sheet-and calculate, for their corresponding polymer graphs, the Tutte polynomials analytically by providing recurrence equations for all three secondary structure elements. Third, we present numerical results comparing the results from our analytical calculations with the numerical results of our algorithm-not only to test consistency, but also to demonstrate that all assigned polynomials are unique labels of the secondary structure elements. This paves the way for an automatic classification of protein structures.
Resumo:
A Heck cyclisation approach is described for the rapid synthesis of a library of natural product-like small molecules, based on the phenanthridine core. The synthesis of a range of substituted benzylamine building blocks and their incorporation into the library is reported, together with a highly selective cis-dihydroxylation protocol that enables access to the target compounds in an efficient manner. Biological evaluation of the library using zebrafish phenotyping has led to the discovery of compound 20c, a novel inhibitor of early-stage zebrafish embryo development.
Resumo:
Though much recent scholarship has investigated the potential of writing in creative practice (including visual arts, drama, even choreography), there are few models in the literature which discuss writing in the context of architectural education. The paper presented here aims to address this dearth of pedagogical research, analysing the cross-disciplinary Writing Architecture Project based in the undergraduate course of the School of Architecture at QUB. Over the course of four years, teaching staff, in partnership with the university's Learning Development Service, technicians and specialist librarians, have addressed an unfortunately persistent struggle for both architecture students and professionals alike to research and construct argument in written form. The paper examines the current problem as identified in the literature before analysing the efficacy of the variety of teaching methods used in the Writing Architecture Project, with conclusions about the project’s success and continuing challenges.
Resumo:
A study undertaken at the University of Liverpool has investigated the potential for using construction and demolition waste (C&DW) derived aggregate in the manufacture of a range of precast concrete products, i.e. building and paving blocks and pavement flags. Phase III, which is reported here, investigated
concrete pavement flags. This was subsequent to studies on building and paving blocks. Recycled demolition aggregate can be used to replace newly quarried limestone aggregate, usually used in coarse (6 mm) and fine (4 mm-to-dust) gradings. The first objective was, as was the case with concrete building
and paving blocks, to replicate the process used by industry in fabricating concrete pavement flags in the laboratory. The ‘‘wet’’ casting technique used by industry for making concrete flags requires a very workable mix so that the concrete flows into the mould before it is compressed. Compression squeezes out water from the top as well as the bottom of the mould. This industrial casting procedure was successfully replicated in the laboratory by using an appropriately modified cube crushing machine and a special mould typical of what is used by industry. The mould could be filled outside of the cube crushing machine and then rolled onto a steel frame and into the machine for it to be compressed. The texture and mechanical properties of the laboratory concrete flags were found to be similar to the factory ones. The experimental work involved two main series of tests, i.e. concrete flags made with concrete- and
masonry-derived aggregate. Investigation of flexural strength was required for concrete paving flags. This is different from building blocks and paving blocks which required compressive and tensile splitting strength respectively. Upper levels of replacement with recycled demolition aggregate were determined
that produced similar flexural strength to paving flags made with newly quarried aggregates, without requiring an increase in the cement content. With up to 60% of the coarse or 40% of the fine fractions replaced with concrete-derived aggregates, the target mean flexural strength of 5.0 N/mm2 was still
achieved at the age of 28 days. There was similar detrimental effect by incorporating the fine masonry-derived aggregate. A replacement level of 70% for coarse was found to be satisfactory and also conservative. However, the fine fraction replacement could only be up to 30% and even reduced to 15% when used for mixes where 60% of the coarse fraction was also masonry-derived aggregate.
Resumo:
Mechanochemical transduction enables an extraordinary range of physiological processes such as the sense of touch, hearing, balance, muscle contraction, and the growth and remodelling of tissue and
bone1–6. Although biology is replete with materials systems that actively and functionally respond to mechanical stimuli, the default mechanochemical reaction of bulk polymers to large external stress is the unselective scission of covalent bonds, resulting in damage or failure7. An alternative to this degradation process is the rational molecular design of synthetic materials such that mechanical stress
favourably altersmaterial properties. A few mechanosensitive polymers with this property have been developed8–14; but their active response is mediated through non-covalent processes, which may
limit the extent to which properties can be modified and the longterm stability in structural materials. Previously, we have shown with dissolved polymer strands incorporating mechanically sensitive chemical groups—so-called mechanophores—that the directional nature of mechanical forces can selectively break and re-form covalent bonds15,16. We now demonstrate that such forceinduced covalent-bond activation can also be realized with mechanophore-linked elastomeric and glassy polymers, by using a mechanophore that changes colour as it undergoes a reversible electrocyclic ring-opening reaction under tensile stress and thus allows us to directly and locally visualize the mechanochemical reaction. We find that pronounced changes in colour and fluorescence emerge with the accumulation of plastic deformation, indicating that in these polymeric materials the transduction of mechanical force into the ring-opening reaction is an activated process. We anticipate that force activation of covalent bonds can serve as a general strategy for the development of new mechanophore building blocks that impart polymeric materials with desirable functionalities ranging from damage sensing to fully regenerative self-healing.
Resumo:
The use of bit-level systolic array circuits as building blocks in the construction of larger word-level systolic systems is investigated. It is shown that the overall structure and detailed timing of such systems may be derived quite simply using the dependence graph and cut-set procedure developed by S. Y. Kung (1988). This provides an attractive and intuitive approach to the bit-level design of many VLSI signal processing components. The technique can be applied to ripple-through and partly pipelined circuits as well as fully systolic designs. It therefore provides a means of examining the relative tradeoff between levels of pipelining, chip area, power consumption, and throughput rate within a given VLSI design.
Resumo:
The use of bit-level systolic arrays in the design of a vector quantized transformed subband coding system for speech signals is described. It is shown how the major components of this system can be decomposed into a small number of highly regular building blocks that interface directly to one another. These include circuits for the computation of the discrete cosine transform, the inverse discrete cosine transform, and vector quantization codebook search.
Resumo:
Whilst conventional bit level pipelining introduces an m cycle delay, it does allow m separate computations to be processed at throughput rates comparable to that using word level systolic arrays. We concentrate on exploiting this delay and describe a systematic method for the design of high performance multiplexed IIR filters. Two multiply and accumulate structures are identified based on shift-and-add and carry-save data organisations which can be used as building blocks in the design of IIR filters. By replacing the word level multiply and accumulate units in word level systolic structures with their equivalent bit level circuits and introducing latches to ensure correct timing, numerous architectures can be designed that process multiplexed data directly without any additional circuit overhead.
Resumo:
A bit-level systolic array system for performing a binary tree Vector Quantization codebook search is described. This consists of a linear chain of regular VLSI building blocks and exhibits data rates suitable for a wide range of real-time applications. A technique is described which reduces the computation required at each node in the binary tree to that of a single inner product operation. This method applies to all the common distortion measures (including the Euclidean distance, the Weighted Euclidean distance and the Itakura-Saito distortion measure) and significantly reduces the hardware required to implement the tree search system. © 1990 Kluwer Academic Publishers.
Resumo:
The use of efficient synchronization mechanisms is crucial for implementing fine grained parallel programs on modern shared cache multi-core architectures. In this paper we study this problem by considering Single-Producer/Single- Consumer (SPSC) coordination using unbounded queues. A novel unbounded SPSC algorithm capable of reducing the row synchronization latency and speeding up Producer-Consumer coordination is presented. The algorithm has been extensively tested on a shared-cache multi-core platform and a sketch proof of correctness is presented. The queues proposed have been used as basic building blocks to implement the FastFlow parallel framework, which has been demonstrated to offer very good performance for fine-grain parallel applications. © 2012 Springer-Verlag.
Resumo:
How do the large scale structures of capitalism and the local social relations of workplaces and organisations shape each other? Through a series of European studies of capital and labour's shifting struggles and compromises; of the politics of welfare, industrial relations and labour markets; and the transformation of post-industrial networked workplaces, this edited collection shows how capitalist workplaces and economies are changing today. The first section explores how European capitalism developed and the different national forms of the struggle between capital and labour for a bigger share of national income. In the second part of the volume, the contributors investigate the institutions that are the building blocks of these different national forms, and how they are changing as labour markets are increasingly shaped by globalisation, feminisation and liberalisation. The final chapters examine how these institutions of capitalism play out in the contemporary workplace – where the most dynamic sectors are based on loose networks and external labour markets and a shifting, uncertain alliance between employers and workers. The authors argue for a new integration of political economy and the sociology of work and organisations.
Resumo:
Alfvén waves are considered to be viable transporters of the non-thermal energy required to heat the Sun's quiescent atmosphere. An abundance of recent observations, from state-of-the-art facilities, have reported the existence of Alfvén waves in a range of chromospheric and coronal structures. Here, we review the progress made in disentangling the characteristics of transverse kink and torsional linear magnetohydrodynamic (MHD) waves. We outline the simple, yet powerful theory describing their basic properties in (non-)uniform magnetic structures, which closely resemble the building blocks of the real solar atmosphere.
Resumo:
Evolution can increase the complexity of matter by self-organization into helical architectures, the best example being the DNA double helix. One common aspect, apparently shared by most of these architectures, is the presence of covalent bonds within the helix backbone. Here, we report the unprecedented crystal structures of a metal complex that self-organizes into a continuous double helical structure, assembled by non-covalent building blocks. Built up solely by weak stacking interactions, this alternating tread stairs-like double helical assembly mimics the DNA double helix structure. Starting from a racemic mixture in aqueous solution, the ruthenium(II) polypyridyl complex forms two polymorphic structures of a left-handed double helical assembly of only the Λ-enantiomer. The stacking of the helices is different in both polymorphs: a crossed woodpile structure versus a parallel columnar stacking.