169 resultados para Surfaces and interfaces


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-sequential processes in the multiple ionization of Xe and Xe+ targets subject to intense femtosecond laser pulses have been investigated. A precise ratio has been determined for the direct comparison of ionization using circular and linear polarized fields. Suppression of non-sequential effects where an ionic target is compared to a neutral atom target has been confirmed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel acousto-optic spectrometer (IfU Diagnostic Systems GmbH) for 2-dimensional (2D) optical emission spectroscopy with high spectral resolution has been developed. The spectrometer is based on acousto-optic tuneable filter technology with fast random wavelength access. Measurements for characterisation of the imaging quality, the spatial resolution, and the spectral resolution are presented. The applicability for 2D-space and phase resolved optical emission spectroscopy (2D-PROES) is shown. 2D-PROES has been applied to an inductively coupled plasma with radio frequency excitation at 13.56 MHz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of laser-accelerated protons as a particle probe for the detection of electric fields in plasmas has led in recent years to a wealth of novel information regarding the ultrafast plasma dynamics following high intensity laser-matter interactions. The high spatial quality and short duration of these beams have been essential to this purpose. We will discuss some of the most recent results obtained with this diagnostic at the Rutherford Appleton Laboratory (UK) and at LULI - Ecole Polytechnique (France), also applied to conditions of interest to conventional Inertial Confinement Fusion. In particular, the technique has been used to measure electric fields responsible for proton acceleration from solid targets irradiated with ps pulses, magnetic fields formed by ns pulse irradiation of solid targets, and electric fields associated with the ponderomotive channelling of ps laser pulses in under-dense plasmas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Density functional theory calculations are used to study the stability of molecularly adsorbed CO and CN over transition metal surfaces. The minimum energy reaction pathways, corresponding reaction barriers (E-a), and reaction enthalpies (Delta H) for the dissociation of CO and CN to atomic products over the 4d transition metals from Zr to Pd have been determined. CO is found to be the more stable adsorbate on the right hand side of the period (from Tc onwards), whereas CN is the more stable surface species on the early metals (Zr, Nb and Mo). A single linear relationship is found to exist that correlates the barriers of both reactions with their respective reaction enthalpies. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CO dissociation and O removal (water formation) are two important processes in the Fischer-Tropsch synthesis. In this study, both processes are studied on the flat and stepped Co(0 0 0 1) using density functional theory. It is found that (i) it is difficult for CO to dissociate on the flat Co(0 0 0 1) due to the high barrier of 1.04 eV relative to the CO molecule in the gas phase; (ii) the stepped Co(0 0 0 1) is much more favoured for CO dissociation; (iii) the first step in water formation, O + H --> OH, is unlikely to occur on the flat Co(0 0 0 1) due to the high barrier of 1.72 eV, however, this reaction can become feasible on steps where the barrier is reduced to 0.73 eV; and (iv) the barrier in the second step, OH + H --> H2O, on steps is higher than that on the flat surface. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chitosan nanoparticles fabricated via different preparation protocols have been in recent years widely studied as carriers for therapeutic proteins and genes with varying degree of effectiveness and drawbacks. This work seeks to further explore the polyionic coacervation fabrication process, and associated processing conditions under which protein encapsulation and subsequent release can be systematically and predictably manipulated so as to obtain desired effectiveness. BSA was used as a model protein which was encapsulated by either incorporation or incubation method, using the polyanion tripolyphosphate (TPP) as the coacervation crosslink agent to form chitosan-BSA-TPP nanoparticles. The BSA-loaded chitosan-TPP nanoparticles were characterized for particle size, morphology, zeta potential, BSA encapsulation efficiency, and subsequent release kinetics, which were found predominantly dependent on the factors of chitosan molecular weight, chitosan concentration, BSA loading concentration, and chitosan/TPP mass ratio. The BSA loaded nanoparticles prepared under varying conditions were in the size range of 200-580 nm, and exhibit a high positive zeta potential. Detailed sequential time frame TEM imaging of morphological change of the BSA loaded particles showed a swelling and particle degradation process. Initial burst released due to surface protein desorption and diffusion from sublayers did not relate directly to change of particle size and shape, which was eminently apparent only after 6 h. It is also notable that later stage particle degradation and disintegration did not yield a substantial follow-on release, as the remaining protein molecules, with adaptable 3-D conformation, could be tightly bound and entangled with the cationic chitosan chains. In general, this study demonstrated that the polyionic coacervation process for fabricating protein loaded chitosan nanoparticles offers simple preparation conditions and a clear processing window for manipulation of physiochemical properties of the nanoparticles (e.g., size and surface charge), which can be conditioned to exert control over protein encapsulation efficiency and subsequent release profile. The weakness of the chitosan nanoparticle system lies typically with difficulties in controlling initial burst effect in releasing large quantities of protein molecules. (C) 2007 Elsevier B.V. All rights reserved.