140 resultados para Fpga
Resumo:
Explicit finite difference (FD) schemes can realise highly realistic physical models of musical instruments but are computationally complex. A design methodology is presented for the creation of FPGA-based micro-architectures for FD schemes which can be applied to a range of applications with varying computational requirements, excitation and output patterns and boundary conditions. It has been applied to membrane and plate-based sound producing models, resulting in faster than real-time performance on a Xilinx XC2VP50 device which is 10 to 35 times faster than general purpose and DSP processors. The models have developed in such a way to allow a wide range of interaction (by a musician) thereby leading to the possibility of creating a highly realistic digital musical instrument.
Resumo:
In this paper, a parallel-matching processor architecture with early jump-out (EJO) control is proposed to carry out high-speed biometric fingerprint database retrieval. The processor performs the fingerprint retrieval by using minutia point matching. An EJO method is applied to the proposed architecture to speed up the large database retrieval. The processor is implemented on a Xilinx Virtex-E, and occupies 6,825 slices and runs at up to 65 MHz. The software/hardware co-simulation benchmark with a database of 10,000 fingerprints verifies that the matching speed can achieve the rate of up to 1.22 million fingerprints per second. EJO results in about a 22% gain in computing efficiency.
Resumo:
In Run Time Reconfiguration (RTR) systems, the amount of reconfiguration is considerable when compared to the circuit changes implemented. This is because reconfiguration is not considered as part of the design flow. This paper presents a method for reconfigurable circuit design by modeling the underlying FPGA reconfigurable circuitry and taking it into consideration in the system design. This is demonstrated for an image processing example on the Xilinx Virtex FPGA.