35 resultados para Division cellulaire
Resumo:
The reduced unitary Whitehead group $\SK$ of a graded division algebra equipped with a unitary involution (i.e., an involution of the second kind) and graded by a torsion-free abelian group is studied. It is shown that calculations in the graded setting are much simpler than their nongraded counterparts. The bridge to the non-graded case is established by proving that the unitary $\SK$ of a tame valued division algebra wih a unitary involution over a henselian field coincides with the unitary $\SK$ of its associated graded division algebra. As a consequence, the graded approach allows us not only to recover results available in the literature with substantially easier proofs, but also to calculate the unitary $\SK$ for much wider classes of division algebras over henselian fields.
Resumo:
Introduction: Our objective was to determine which factors were predictive of good long-term outcomes after fixed appliance treatment of Class II Division 1 malocclusion. Methods: Two hundred seven patients with Class II Division 1 malocclusion were examined in early adulthood at a mean of 4.6 years after treatment with fixed appliances. The peer assessment rating index was used to evaluate dental alignment and occlusal relationships. The soft-tissue profile was assessed with the Holdaway angle. Results: Logistic regression identified 3 pretreatment variables that were predictive of a good facial profile (Holdaway angle) at recall: the lower lip to E-plane distance (P
Resumo:
Burkholderia cenocepacia are opportunistic Gram-negative bacteria that can cause chronic pulmonary infections in patients with cystic fibrosis. These bacteria demonstrate a high-level of intrinsic antibiotic resistance to most clinically useful antibiotics complicating treatment. We previously identified 14 genes encoding putative Resistance-Nodulation-Cell Division (RND) efflux pumps in the genome of B. cenocepacia J2315, but the contribution of these pumps to the intrinsic drug resistance of this bacterium remains unclear.
Resumo:
A novel high performance bit parallel architecture to perform square root and division is proposed. Relevant VLSI design issues have been addressed. By employing redundant arithmetic and a semisystolic schedule, the throughput has been made independent of the size of the array.
Resumo:
A high-performance VLSI architecture to perform combined multiply-accumulate, divide, and square root operations is proposed. The circuit is highly regular, requires only minimal control, and can be reconfigured for every cycle. The execution time for each operation is the same. The combination of redundancy and pipelining results in a throughput independent of the wordsize of the array. With current CMOS technology, throughput rates in excess of 80 million operations per second are achievable.
Resumo:
Real time digital signal processing demands high performance implementations of division and square root. This can only be achieved by the design of fast and efficient arithmetic algorithms which address practical VLSI architectural design issues. In this paper, new algorithms for division and square root are described. The new schemes are based on pre-scaling the operands and modifying the classical SRT method such that the result digits and the remainders are computed concurrently and the computations in adjacent rows are overlapped. Consequently, their performance exceeds that of the SRT methods. The hardware cost for higher radices is considerably more than that of the SRT methods but for many applications, this is not prohibitive. A system of equations is presented which enables both an analysis of the method for any radix and the parameters of implementations to be easily determined. This is illustrated for the case of radix 2 and radix 4. In addition, a highly regular array architecture combining the division and square root method is described. © 1994 Kluwer Academic Publishers.
Resumo:
In real time digital signal processing, high performance modules for division and square root are essential if many powerful algorithms are to be implemented. In this paper, a new radix 2 algorithms for SRT division and square root are developed. For these new schemes, the result digits and the residuals are computed concurrently and the computations in adjacent rows are overlapped. Consequently, their performance should exceed that of the radix 2 SRT methods. VLSI array architectures to implement the new division and square root schemes are also presented.
Resumo:
The paper examines the role of shared spaces in divided cities in promoting future sustainable communities and spaces described as inclusive to all. It addresses the current challenges that prevent such inclusiveness and suggests future trends of its development to be of benefit to the wider city community. It explains how spaces in divided cities are carved up into perceived ownerships and territorialized areas, which increases tension on the shared space between territories; the control of which can often lead to inter-community disputes. The paper reports that common shared space in-between conflicting communities takes on increased importance since the nature of the conflict places emphasis on communities’ confidence, politically and socially, while also highlighting the necessity for confidence in inclusion and feeling secure in the public domain. In order to achieve sustainable environments, strategies to promote shared spaces require further focus on the significance of everyday dynamics as essential aspects for future integration and conflict resolution.
Resumo:
In this paper, weconsider switch-and-stay combining (SSC) in two-way relay systems with two amplify-and-forward relays, one of which is activated to assist the information exchange between the two sources. The system operates in either analog network coding (ANC) protocol where the communication is only achieved with the help of the active relay or timedivision broadcast (TDBC) protocol where the direct link between two sources can be utilized to exploit more diversity gain. In both cases, we study the outage probability and bit error rate (BER) for Rayleigh fading channels. In particular, we derive closed-form lower bounds for the outage probability and the average BER, which remain tight for different fading conditions. We also present asymptotic analysis for both the outage probability and the average BER at high signalto-noise ratio. It is shown that SSC can achieve the full diversity order in two-way relay systems for both ANC and TDBC protocols with proper switching thresholds. Copyright © 2014 John Wiley & Sons, Ltd.
After the Male Breadwinner Model? Childcare Services and the Division of Labor in European Countries
Resumo:
Fundamental reforms in childcare services appear to have eroded traditional
support to the male breadwinner model across European states. There has been a strong debate about the direction of these changes, and the ways in which childcare services can alter the division of labor and promote gender equality. This paper deals with these issues by using fuzzy set ideal-type analysis to assess the conformity of childcare service provisions in European economies to Fraser’s four ideal typical models: male breadwinner, caregiver parity, universal breadwinner, and universal caregiver. We find that there is resilience of traditional gender roles in the majority of European countries, while there are different variants of the universal breadwinner shaping different forms of childcare policies. The more equalitarian universal caregiver model maintains its utopian character.