215 resultados para Rapid Technologie


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methods are presented for the rapid design of DSP ASICs based on the use of a series of hierarchical VHDL libraries which are portable across many silicon foundries. These allows complex DSP silicon systems to be developed in a small fraction of the time normally required. Resulting designs are highly competitive with those developed using more conventional methods. The approach is illustrated using several examples. These include ADPCM codecs, as well as DCT and FFT cores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methods are presented for developing synthesizable FFT cores. These are based on a modular approach in which parameterized commutator and processor blocks are cascaded to implement the computations required in many important FFT signal flow graphs. In addition, it is shown how the use of a digital serial data organization can be used to produce systems that offer 100% processor utilization along with reductions in storage requirements. The approach has been used to create generators for the automated synthesis of FFT cores that are portable across a broad range of silicon technologies. Resulting chip designs are competitive with ones created using manual methods but with significant reductions in design times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodology which allows a non-specialist to rapidly design silicon wavelet transform cores has been developed. This methodology is based on a generic architecture utilizing time-interleaved coefficients for the wavelet transform filters. The architecture is scaleable and it has been parameterized in terms of wavelet family, wavelet type, data word length and coefficient word length. The control circuit is designed in such a way that the cores can also be cascaded without any interface glue logic for any desired level of decomposition. This parameterization allows the use of any orthonormal wavelet family thereby extending the design space for improved transformation from algorithm to silicon. Case studies for stand alone and cascaded silicon cores for single and multi-stage analysis respectively are reported. The typical design time to produce silicon layout of a wavelet based system has been reduced by an order of magnitude. The cores are comparable in area and performance to hand-crafted designs. The designs have been captured in VHDL so they are portable across a range of foundries and are also applicable to FPGA and PLD implementations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodology has been developed which allows a non-specialist to rapidly design silicon wavelet transform cores for a variety of specifications. The cores include both forward and inverse orthonormal wavelet transforms. This methodology is based on efficient, modular and scaleable architectures utilising time-interleaved coefficients for the wavelet transform filters. The cores are parameterized in terms of wavelet type and data and coefficient word lengths. The designs have been captured in VHDL and are hence portable across a range of silicon foundries as well as FPGA and PLD implementations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design of a single chip adaptive beamformer which contains 5 million transistors and can perform 50 GigaFlops. The core processor of the adaptive beamformer is a QR-array processor implemented on a fully efficient linear systolic architecture. The paper highlights a number of rapid design techniques that have been used to realize the design. These include an architecture synthesis tool for quickly developing the circuit architecture and the utilization of a library of parameterizable silicon intellectual property (IP) cores, to rapidly develop the circuit layouts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rapid design methodology for biorthogonal wavelet transform cores has been developed. This methodology is based on a generic, scaleable architecture for the wavelet filters. The architecture offers efficient hardware utilization by combining the linear phase property of biorthogonal filters with decimation in a MAC based implementation. The design has been captured in VHDL and parameterized in terms of wavelet type, data word length and coefficient word length. The control circuit is embedded within the cores and allows them to be cascaded without any interface glue logic for any desired level of decomposition. The design time to produce silicon layout of a biorthogonal wavelet based system is typically less than a day. The resulting silicon cores produced are comparable in area and performance to hand-crafted designs. The designs are portable across a range of foundries and are also applicable to FPGA and PLD implementations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The level of Kluane Lake, the largest lake in Yukon Territory, was lower than at present during most of the Holocene. The lake rose rapidly in the late seventeenth century to a level 12 m above present, drowning forest and stranding driftwood on a conspicuous high-stand beach, remnants of which are preserved at the south end of the lake. Kluane Lake fell back to near its present level by the end of the eighteenth century and has fluctuated within a range of about 3 m over the last 50 yr. The primary control on historic fluctuations in lake level is the discharge of Slims River, the largest source of water to the lake. We use tree ring and radiocarbon ages, stratigraphy and sub-bottom acoustic data to evaluate two explanations for the dramatic changes in the level of Kluane Lake. Our data support the hypothesis of Hugh Bostock, who suggested in 1969 that the maximum Little Ice Age advance of Kaskawulsh Glacier deposited large amounts of sediment in the Slims River valley and established the present course of Slims River into Kluane Lake. Bostock argued that these events caused the lake to rise and eventually overflow to the north. The overflowing waters incised the Duke River fan at the north end of Kluane Lake and lowered the lake to its present level. This study highlights the potentially dramatic impacts of climate change on regional hydrology during the Little Ice Age in glacierised mountains. © 2006 University of Washington.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The island of Mauritius offers the opportunity to study the poorly understood vegetation response to climate change on a small tropical oceanic island. A high-resolution pollen record from a 10 m long peat core from Kanaka Crater (560 m elevation, Mauritius, Indian Ocean) shows that vegetation shifted from a stable open wet forest Last Glacial state to a stable closed-stratified-tall-forest Holocene state. An ecological threshold was crossed at ∼11.5 cal ka BP, propelling the forest ecosystem into an unstable period lasting ∼4000 years. The shift between the two steady states involves a cascade of four abrupt (<150 years) forest transitions in which different tree species dominated the vegetation for a quasi-stable period of respectively ∼1900, ∼1100 and ∼900 years. We interpret the first forest transition as climate-driven, reflecting the response of a small low topography oceanic island where significant spatial biome migration is impossible. The three subsequent forest transitions are not evidently linked to climate events, and are suggested to be driven by internal forest dynamics. The cascade of four consecutive events of species turnover occurred at a remarkably fast rate compared to changes during the preceding and following periods, and might therefore be considered as a composite tipping point in the ecosystem. We hypothesize that wet gallery forest, spatially and temporally stabilized by the drainage system, served as a long lasting reservoir of biodiversity and facilitated a rapid exchange of species with the montane forests to allow for a rapid cascade of plant associations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: The objective of this study was to develop a novel screening method for detection of viable Mycobacterium avium subsp. paratuberculosis (Map) in milk and faeces, as a rapid alternative to Map culture.
Methods and results: The new method couples Map-specific peptide-mediated magnetic separation technique with an optimised phage amplification assay followed by detection of released progeny phage by ELISA in a competition assay format using polyclonal antibody produced against the D29 mycobacteriophage involved in the phage assay. Sample matrices were found not to interfere with the developed method and the dynamic range of the assay was 3 X 102 – 6 X 108 phage ml-1. When low numbers of Map were present (102 CFU ml-1) the burst size of a single host Map cell was maximal (103 phage per cell) resulting in a highly sensitive screening assay.
Conclusion: A rapid, sensitive immuno-based screening method suitable for the detection of viable Map in milk and faeces was developed.
Significance and impact of study: The novel PMS-phage-ELISA permits sensitive, qualitative detection of viable Map in milk or faeces samples within 48 h, representing a substantial decrease in time to detection compared to current culture methods for Map.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reagent pre-storage in a microfluidic chip can enhance operator convenience, simplify the system design, reduce the cost of storage and shipment, and avoid the risk of cross-contamination. Although dry reagents have long been used in lateral flow immunoassays, they have rarely been used for nucleic acid-based point-of-care (POC) assays due to the lack of reliable techniques to dehydrate and store fragile molecules involved in the reaction. In this study, we describe a simple and efficient method for prolonged on-chip storage of PCR reagents. The method is based on gelification of all reagents required for PCR as a ready-to-use product. The approach was successfully implemented in a lab-on-a-foil system, and the gelification process was automated for mass production. Integration of reagents on-chip by gelification greatly facilitated the development of easy-to-use lab-on-a-chip (LOC) devices for fast and cost-effective POC analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a solid-phase PCR (SP-PCR) for rapid detection, identification, and sub-typing of various Salmonella species, the major food-borne cause of salmonellosis. The target DNA is firstly amplified with PCR primers (one primer is labeled with fluorophores) in the liquid phase. Simultaneously on the solid phase, the amplified PCR amplicons interact with the nested DNA probes immobilized on the solid substrate as an array. If the immobilized probes match the sequence of the DNA templates they are extended by the polymerase and serve as template for the second strand elongation primed by the liquid phase primer thus generating new templates for the SP-PCR. After the reaction, PCR products labeled with fluorophores remain attached to the substrate and can be visualized directly by fluorescence readout devices. Using this method, S. enteritidis, S. typhimurium and S. dublin can be detected at the same time. The method offers several advantages over conventional multiplex PCR: less competition between different primer pairs thus increasing multiplexing capability, only single wavelength optical readout needed for the multiplexing detection, and less time-consuming owing to reduction of the post-PCR gel electrophoresis. The method will be useful for development of point-of-care devices for rapid detection and identification of Salmonella spp. A solid-phase PCR for rapid detection and identification of S. enteritidis, S. typhimurium and S. dublin is developed. The method offers advantages such as better multiplexing capability, only single wavelength optical readout needed, and less time-consuming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we introduce a dual enlargement of gold nanoparticles (AuNPs) for the scanometric detection of pathogenic
bacteria. After capturing the target bacteria (Campylobacter jejuni cells), the gold immunoprobes were added to create signal on a solid substrate. The signal was then amplified dually by a gold growth process and a silver enhancement resulting in stronger intensity which can easily be recognized by an unaided eye, or measured by an inexpensive flatbed scanner. The dual-enhanced nanocatalysis is herein reported for the first time, it provides valuable insight into the development of a rapid, simple and cost-effective detection format.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Before a natural sound can be recognized, an auditory signature of its source must be learned through experience. Here we used random waveforms to probe the formation of new memories for arbitrary complex sounds. A behavioral measure was designed, based on the detection of repetitions embedded in noises up to 4 s long. Unbeknownst to listeners, some noise samples reoccurred randomly throughout an experimental block. Results showed that repeated exposure induced learning for otherwise totally unpredictable and meaningless sounds. The learning was unsupervised and resilient to interference from other task-relevant noises. When memories were formed, they emerged rapidly, performance became abruptly near-perfect, and multiple noises were remembered for several weeks. The acoustic transformations to which recall was tolerant suggest that the learned features were local in time. We propose that rapid sensory plasticity could explain how the auditory brain creates useful memories from the ever-changing, but sometimes repeating, acoustical world. © 2010 Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The operations and processes that the human brain employs to achieve fast visual categorization remain a matter of debate. A first issue concerns the timing and place of rapid visual categorization and to what extent it can be performed with an early feed-forward pass of information through the visual system. A second issue involves the categorization of stimuli that do not reach visual awareness. There is disagreement over the degree to which these stimuli activate the same early mechanisms as stimuli that are consciously perceived. We employed continuous flash suppression (CFS), EEG recordings, and machine learning techniques to study visual categorization of seen and unseen stimuli. Our classifiers were able to predict from the EEG recordings the category of stimuli on seen trials but not on unseen trials. Rapid categorization of conscious images could be detected around 100?ms on the occipital electrodes, consistent with a fast, feed-forward mechanism of target detection. For the invisible stimuli, however, CFS eliminated all traces of early processing. Our results support the idea of a fast mechanism of categorization and suggest that this early categorization process plays an important role in later, more subtle categorizations, and perceptual processes.