322 resultados para Pharmaceutical chemistry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potent 3-anilino-4-arylmaleimide glycogen synthase kinase-3 (GSK-3) inhibitors have been prepared using automated array methodology. A number of these are highly selective, having little inhibitory potency against more than 20 other protein kinases. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aryl hydroxylamine derivs. have been synthesized that are some of the most potent inhibitors of hCMV protease prepd. to date (IC50 14-60 nM). Mass spectrometry studies indicate that oxazinone derived hydroxylamines inhibit the enzyme by acylation of Ser132 whereas non-oxazinone derived hydroxylamines appear to inhibit via formation of a sulfinanilide at Cys138.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid-phase oligonucleotide conjugation by nitrile oxide-alkyne click cycloaddition chemistry has been successfully demonstrated; the reaction, compatible with all nucleobases, requires no metal catalyst and proceeds under physiological conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spacer structure of homobivalent quinazolinimes acting as potent acetyl-(AChE)- and butyrylcholinesterase (BChE) inhibitors was chemically modified introducing tertiary amine and acyl-amide moieties, and the activities at both ChEs were evaluated. Molecular docking was applied to explain the data and probe the capacity of the mid-gorge site of both ChEs. The novel spacer structures considerably alter the biological profile of bivalent quinazolinimines with regard to both inhibitory activity and selectivity. Mutual interaction of binding to the various sites of the enzymes was further investigated by applying also different spacer lengths and ring sizes of the alicycle of the tricyclic quinazolinimines. In order to achieve selectivity toward BChE and to improve inhibitory activities, the spacer structure was optimized and identified a highly potent and selective BChE inhibitor. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Galactic bulge planetary nebulae show evidence of mixed chemistry with emission from both silicate dust and polycyclic aromatic hydrocarbons (PAHs). This mixed chemistry is unlikely to be related to carbon dredge-up, as third dredge-up is not expected to occur in the low-mass bulge stars. We show that the phenomenon is widespread and is seen in 30 nebulae out of 40 of our sample, selected on the basis of their infrared flux. Hubble Space Telescope (HST) images and Ultraviolet and Visual Echelle Spectrograph (UVES) spectra show that the mixed chemistry is not related to the presence of emission-line stars, as it is in the Galactic disc population. We also rule out interaction with the interstellar medium (ISM) as origin of the PAHs. Instead, a strong correlation is found with morphology and the presence of a dense torus. A chemical model is presented which shows that hydrocarbon chains can form within oxygen-rich gas through gas-phase chemical reactions. The model predicts two layers, one at A_V~ 1.5, where small hydrocarbons form from reactions with C+, and one at A_V~ 4, where larger chains (and by implication, PAHs) form from reactions with neutral, atomic carbon. These reactions take place in a mini-photon-dominated region (PDR). We conclude that the mixed-chemistry phenomenon occurring in the Galactic bulge planetary nebulae is best explained through hydrocarbon chemistry in an ultraviolet (UV)-irradiated, dense torus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biochemical studies reveal that a conserved arginine residue (R37) at the centre of the 14 angstrom internal cavity of histone deacetylase (HDAC) 8 is important for catalysis and acetate affinity. Computational studies indicate that R37 forms multiple hydrogen bonding interactions with the backbone carbonyl oxygen atoms of two conserved glycine residues, G303 and G305, resulting in a 'closed' form of the channel. One possible rationale for these data is that water or product (acetate) transit through the catalytically crucial internal channel of HDAC8 is regulated by a gating interaction between G139 and G303 tethered in position by the conserved R37. (C) 2011 Elsevier Ltd. All rights reserved.