16 resultados para HILBERT SPACE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An example is constructed of an infinite-dimensional separable pre-Hilbert space non-homeomorphic to any of its closed hyperplanes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Let H be a (real or complex) Hilbert space. Using spectral theory and properties of the Schatten–Von Neumann operators, we prove that every symmetric tensor of unit norm in HoH is an infinite absolute convex combination of points of the form xox with x in the unit sphere of the Hilbert space. We use this to obtain explicit characterizations of the smooth points of the unit ball of HoH .

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An example of a sigma -compact infinite-dimensional pre-Hilbert space H is constructed such that any continuous linear operator T: H --> H is of the form T = lambdaI + F for some lambda is an element of R and for a finite-dimensional continuous linear operator F. A class of simple examples of pre-Hilbert spaces nonisomorphic to their closed hyperplanes is given. A sigma -compact pre-Hilbert space H isomorphic to H x R x R and nonisomorphic to H x R is also constructed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A reduced-density-operator description is developed for coherent optical phenomena in many-electron atomic systems, utilizing a Liouville-space, multiple-mode Floquet–Fourier representation. The Liouville-space formulation provides a natural generalization of the ordinary Hilbert-space (Hamiltonian) R-matrix-Floquet method, which has been developed for multi-photon transitions and laser-assisted electron–atom collision processes. In these applications, the R-matrix-Floquet method has been demonstrated to be capable of providing an accurate representation of the complex, multi-level structure of many-electron atomic systems in bound, continuum, and autoionizing states. The ordinary Hilbert-space (Hamiltonian) formulation of the R-matrix-Floquet method has been implemented in highly developed computer programs, which can provide a non-perturbative treatment of the interaction of a classical, multiple-mode electromagnetic field with a quantum system. This quantum system may correspond to a many-electron, bound atomic system and a single continuum electron. However, including pseudo-states in the expansion of the many-electron atomic wave function can provide a representation of multiple continuum electrons. The 'dressed' many-electron atomic states thereby obtained can be used in a realistic non-perturbative evaluation of the transition probabilities for an extensive class of atomic collision and radiation processes in the presence of intense electromagnetic fields. In order to incorporate environmental relaxation and decoherence phenomena, we propose to utilize the ordinary Hilbert-space (Hamiltonian) R-matrix-Floquet method as a starting-point for a Liouville-space (reduced-density-operator) formulation. To illustrate how the Liouville-space R-matrix-Floquet formulation can be implemented for coherent atomic radiative processes, we discuss applications to electromagnetically induced transparency, as well as to related pump–probe optical phenomena, and also to the unified description of radiative and dielectronic recombination in electron–ion beam interactions and high-temperature plasmas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We establish a mapping between a continuous-variable (CV) quantum system and a discrete quantum system of arbitrary dimension. This opens up the general possibility to perform any quantum information task with a CV system as if it were a discrete system. The Einstein-Podolsky-Rosen state is mapped onto the maximally entangled state in any finite-dimensional Hilbert space and thus can be considered as a universal resource of entanglement. An explicit example of the map and a proposal for its experimental realization are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An entangled two-mode coherent state is studied within the framework of 2 x 2-dimensional Hilbert space. An entanglement concentration scheme based on joint Bell-state measurements is worked out. When the entangled coherent state is embedded in vacuum environment, its entanglement is degraded but not totally lost. It is found that the larger the initial coherent amplitude, the faster entanglement decreases. We investigate a scheme to teleport a coherent superposition state while considering a mixed quantum channel. We find that the decohered entangled coherent state may be useless for quantum teleportation as it gives the optimal fidelity of teleportation less than the classical limit 2/3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We formulate a conclusive teleportation protocol for a system in d-dimensional Hilbert space utilizing the positive operator- valued measurement. The conclusive teleportation protocol ensures some perfect teleportation events when the channel is only partially entangled. at the expense of lowering the overall average fidelity. We discuss how much information remains in the inconclusive parts of the teleportation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quantum nonlocality is tested for an entangled coherent state, interacting with a dissipative environment. A pure entangled coherent state violates Bell's inequality regardless of its coherent amplitude. The higher the initial nonlocality, the more rapidly quantum nonlocality is lost. The entangled coherent state can also be investigated in the framework of 2x2 Hilbert space. The quantum nonlocality persists longer in 2x2 Hilbert space. When it decoheres it is found that the entangled coherent state fails the nonlocality test, which contrasts with the fact that the decohered entangled state is always entangled.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A complex number lambda is called an extended eigenvalue of a bounded linear operator T on a Banach space B if there exists a non-zero bounded linear operator X acting on B such that XT = lambda TX. We show that there are compact quasinilpotent operators on a separable Hilbert space, for which the set of extended eigenvalues is the one-point set {1}.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let A be a self-adjoint operator on a Hilbert space. It is well known that A admits a unique decomposition into a direct sum of three self-adjoint operators A(p), A(ac) and A(sc) such that there exists an orthonormal basis of eigenvectors for the operator A(p) the operator A(ac) has purely absolutely continuous spectrum and the operator A(sc) has purely singular continuous spectrum. We show the existence of a natural further decomposition of the singular continuous component A c into a direct sum of two self-adjoint operators A(sc)(D) and A(sc)(ND). The corresponding subspaces and spectra are called decaying and purely non-decaying singular subspaces and spectra. Similar decompositions are also shown for unitary operators and for general normal operators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let H be a two-dimensional complex Hilbert space and P(3H) the space of 3-homogeneous polynomials on H. We give a characterization of the extreme points of its unit ball, P(3H), from which we deduce that the unit sphere of P(3H) is the disjoint union of the sets of its extreme and smooth points. We also show that an extreme point of P(3H) remains extreme as considered as an element of L(3H). Finally we make a few remarks about the geometry of the unit ball of the predual of P(3H) and give a characterization of its smooth points.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A unitary operator V and a rank 2 operator R acting on a Hilbert space H are constructed such that V + R is hypercyclic. This answers affirmatively a question of Salas whether a finite rank perturbation of a hyponormal operator can be supercyclic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chan and Shapiro showed that each (non-trivial) translation operator acting on the Fréchet space of entire functions endowed with the topology of locally uniform convergence supports a universal function of exponential type zero. We show the existence of d-universal functions of exponential type zero for arbitrary finite tuples of pairwise distinct translation operators. We also show that every separable infinite-dimensional Fréchet space supports an arbitrarily large finite and commuting disjoint mixing collection of operators. When this space is a Banach space, it supports an arbitrarily large finite disjoint mixing collection of C0-semigroups. We also provide an easy proof of the result of Salas that every infinite-dimensional Banach space supports arbitrarily large tuples of dual d-hypercyclic operators, and construct an example of a mixing Hilbert space operator T so that (T,T2) is not d-mixing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quantum discord quantifies nonclassical correlations in a quantum system including those not captured by entanglement. Thus, only states with zero discord exhibit strictly classical correlations. We prove that these states are negligible in the whole Hilbert space: typically a state picked out at random has positive discord and, given a state with zero discord, a generic arbitrarily small perturbation drives it to a positive-discord state. These results hold for any Hilbert-space dimension and have direct implications for quantum computation and for the foundations of the theory of open systems. In addition, we provide a simple necessary criterion for zero quantum discord. Finally, we show that, for almost all positive-discord states, an arbitrary Markovian evolution cannot lead to a sudden, permanent vanishing of discord.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that, if M is a subspace lattice with the property that the rank one subspace of its operator algebra is weak* dense, L is a commutative subspace lattice and P is the lattice of all projections on a separable Hilbert space, then L⊗M⊗P is reflexive. If M is moreover an atomic Boolean subspace lattice while L is any subspace lattice, we provide a concrete lattice theoretic description of L⊗M in terms of projection valued functions defined on the set of atoms of M . As a consequence, we show that the Lattice Tensor Product Formula holds for AlgM and any other reflexive operator algebra and give several further corollaries of these results.