A hypercyclic finite rank perturbation of a unitary operator


Autoria(s): Shkarin, Stanislav
Data(s)

2010

Resumo

A unitary operator V and a rank 2 operator R acting on a Hilbert space H are constructed such that V + R is hypercyclic. This answers affirmatively a question of Salas whether a finite rank perturbation of a hyponormal operator can be supercyclic.

Identificador

http://pure.qub.ac.uk/portal/en/publications/a-hypercyclic-finite-rank-perturbation-of-a-unitary-operator(39767f11-bd4e-4641-b4e6-e2948a521f5a).html

http://dx.doi.org/10.1007/s00208-010-0479-5

Idioma(s)

eng

Direitos

info:eu-repo/semantics/restrictedAccess

Fonte

Shkarin , S 2010 , ' A hypercyclic finite rank perturbation of a unitary operator ' Mathematische Annalen , vol 348 , no. 2 , pp. 379-393 . DOI: 10.1007/s00208-010-0479-5

Palavras-Chave #/dk/atira/pure/subjectarea/asjc/2600 #Mathematics(all)
Tipo

article