A hypercyclic finite rank perturbation of a unitary operator
Data(s) |
2010
|
---|---|
Resumo |
A unitary operator V and a rank 2 operator R acting on a Hilbert space H are constructed such that V + R is hypercyclic. This answers affirmatively a question of Salas whether a finite rank perturbation of a hyponormal operator can be supercyclic. |
Identificador | |
Idioma(s) |
eng |
Direitos |
info:eu-repo/semantics/restrictedAccess |
Fonte |
Shkarin , S 2010 , ' A hypercyclic finite rank perturbation of a unitary operator ' Mathematische Annalen , vol 348 , no. 2 , pp. 379-393 . DOI: 10.1007/s00208-010-0479-5 |
Palavras-Chave | #/dk/atira/pure/subjectarea/asjc/2600 #Mathematics(all) |
Tipo |
article |