15 resultados para dinâmica textual
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Se busca generar una discusión sobre el proceso de diseño y sistematización de una experiencia de aula en la cual se integra el Ambiente de Geometría Dinámica (AGD) Cabri 3D en el aprendizaje de la transformación de rotación en el espacio. En nuestra propuesta, encontramos investigaciones importantes en didáctica de las matemáticas que han puesto en evidencia las dificultades que los estudiantes presentan comúnmente en la exploración de propiedades de los objetos geométricos en el espacio, e incluso la representación de los mismos en él. Por lo cual, la comunicación se apoya en una aproximación instrumental que busca dar cuenta del papel mediador de Cabri 3D como un instrumento construido por el sujeto en el contexto de aprendizaje de la geometría. La propuesta se basa en el diseño de una situación didáctica en la que se integra el AGD Cabri 3D; hemos introducido una categoría que caracteriza el objeto matemático a movilizar en la secuencia de situaciones didácticas, esta categoría es la transformación de rotación en el espacio. La primera caracterización debe darse desde el reconocimiento de la Geometría transformacional como una alternativa para que los estudiantes construyan conocimiento del espacio a partir de la exploración y actuación sobre el mismo, así en la propuesta de la secuencia didáctica se tomara en consideración que la transformación de rotación posibilita la exploración de aspectos complejos tales como el sentido, la magnitud angular y la invarianza de propiedades. Esta última (la invarianza de propiedades) es uno de los aspectos más importante que se deberán distinguir en el diseño de la secuencia didáctica; en la composición de rotaciones por ejemplo, se reconoce como importante que los estudiantes tengan la capacidad de poder determinar cuáles objetos geométricos, puestos en juego en la transformación, conservan sus propiedades, así como poder determinar dentro de la rotación qué se conserva invariante. La segunda caracterización es el reconocimiento de la visualización como medio para que el estudiante interprete la información gráfica de conceptos matemáticos que se le presentan, con el fin de resolver un problema y realizar conjeturas acerca de la noción matemática que está trabajando. La pregunta central para animar la discusión en torno a nuestra comunicación es la siguiente: ¿Cómo influye el uso de Cabri 3D en el estudio del espacio y la exploración de la noción de transformación de rotación en el espacio?, ¿En la organización de la clase y los dispositivos que se deben implementar en la misma?
Resumo:
Esta comunicación aporta información sobre cómo un experimento de enseñanza en un entorno tecnológico usando applets elaborados con el programa de geometría dinámica Geogebra, ayudó a estudiantes de bachillerato (17-18 años) a construir distintas aproximaciones al concepto de función primitiva. Los resultados muestran por una parte que los estudiantes fueron capaces de relacionar distintas ideas usando argumentos variados para asociar la gráfica de una función con la de una de sus primitivas; en estos argumentos subyace principalmente la relación de este concepto con el de derivada. Por otra parte las soluciones aportadas se apoyaron más en el pensamiento visual que en el analítico.
Resumo:
En este taller los participantes, a partir del desarrollo de una tarea, identifican algunas etapas en la formulación y validación de conjeturas. La tarea se centra en la exploración de un applet relacionado con la ecuación vectorial de la recta en el plano, a partir del cual se identifican algunas propiedades geométricas del objeto geométrico y, con estas, se establecen e intentan validar generalidades. Este taller surge en el marco del proyecto de investigación “Razonamientos abductivos, inductivos y deductivos desarrollados por estudiantes del curso de Geometría Analítica al realizar una tarea relacionada con la representación de objetos geométricos en distintos sistemas coordenados” que se realiza este año en la Universidad Pedagógica Nacional.
Resumo:
A través de una serie de tareas desarrolladas con un sofware de geometría dinámica, buscamos propiciar la comprensión de lo que es y lo que expresa una condicional en matemáticas. Por medio de problemas propuestos, en los cuales se debe formular una conjetura, como resultado de la exploración realizada y la determinación de invariantes, se busca que los participantes del taller comprendan que las condiciones establecidas en el antecedente son sucientes para concluir el consecuente y que el consecuente es necesariamente resultado de las condiciones que se reportan en el antecedente.
Resumo:
Se presenta una experiencia sobre el estudio de las isometrías en el plano en la educación secundaria, utilizando software de geometría dinámica. Se construye y estudia las propiedades de los distintos movimientos (traslaciones, giros y simetrías). La actividad se desarrolla en la clase de informática con apoyo de programas como geogebra y applets de cabriweb. Se tratan elementos invariantes, composición de movimientos y motivos que teselan el plano.
Resumo:
Se presenta un estudio y una propuesta didáctica que pretende atender las dificultades en la compresión de los estudiantes sobre las funciones sinusoidales. El objetivo es presentar una manera novedosa de abordar la construcción de la función seno a partir del uso de un programa de geometría dinámica, aprovechando sus posibilidades para realizar traslaciones y homotecias. Para lograr tal objetivo, se proponen actividades destinadas a evidenciar la naturaleza proporcional de los elementos que intervienen en la construcción de las funciones sinusoidales, principalmente el papel de la cuerda, el radio de la circunferencia, el arco, el cateto y el periodo.
Resumo:
El creciente uso de software de geometría dinámica 3-dimensional plantea nuevas cuestiones a los investigadores en Educación Matemática. Para aportar información sobre el aprendizaje de geometría espacial en esta disciplina mediante entornos de geometría dinámica 3-dimensional, y sobre posibles fortalezas y debilidades de tales entornos, presentamos resultados de una investigación experimental en la que se analiza cómo un estudiante de altas capacidades matemáticas aprende conceptos relativos a paralelismo entre rectas y/o planos en el espacio mediante la resolución de actividades en un entorno de Cabri 3D.
Resumo:
Trabajando en un ambiente de Geometría Dinámica y a partir de actividades que involucran al arbelos de Arquímedes se busca explicitar la formulación de conjeturas y elaborar demostraciones que den cuenta de las conjeturas formuladas, poniendo de relieve la diversidad de resultados obtenidos así como la riqueza de los caminos tomados.
Resumo:
Se reporta aquí un minicurso en el que participaron profesores de matemática de Enseñanza Media. Trabajando en un ambiente de Geometría Dinámica se aborda la resolución de problemas que involucran distintas áreas de la matemática: geometría métrica, cálculo diferencial, geometría analítica, álgebra, y que permiten poner de manifiesto la pertinencia y relevancia –así como señalar sus peculiaridades- del ambiente dinámico en la construcción del conocimiento matemático por parte de los participantes y a su vez discutir su papel en el trabajo con estudiantes.
Resumo:
Este artículo se enmarca en el proyecto de investigación “Creación de metodologías que permitan la integración de ciencias y matemáticas en el proceso de enseñanza y aprendizaje de la educación diversificada costarricense”, que fuera realizado por un equipo interdisciplinario conformado por profesionales en las áreas de matemática, física, química, biología y sociología. Junto a una breve contextualización teórica y metodológica, el presente artículo ofrece algunos ejemplos con prácticas y contenidos que faciliten a los estudiantes aplicar los conceptos de razones y proporciones en el análisis de casos vinculados a la vida cotidiana, y que a su vez permiten la integración con otras disciplinas.
Resumo:
Se muestra la construcción de algunas cónicas por medio del software de geometría dinámica llamado RyC. Una de las principales ventajas de esta herramienta es que permite animar las construcciones geométricas conservando sus propiedades básicas, es decir, que le agrega movimiento a la clásica geometría euclidiana.
Resumo:
Este trabajo es parte de un proyecto de investigación sobre la aplicación de tecnología computacional en la enseñanza y aprendizaje de matemáticas con alumnos de nivel medio básico o secundaria (séptimo a noveno grado) y nivel medio superior o bachillerato (décimo a doceavo grado), en particular, trata de entender la función mediadora del efecto de “arrastre” del software de geometría dinámica en la cognición de sujetos que estudian las nociones de variación y variable. Aquí reportamos los resultados de una exploración, usando Cabri, en el aprendizaje de esas nociones con estudiantes de nivel medio básico de 13-14 años de edad. Se describen las actividades, las respuestas de los estudiantes y una experiencia que sugiere el potencial de la verbalización de los resultados por los estudiantes en el proceso de simbolización algebraica.
Resumo:
La utilización de una herramienta nueva, de cualquier tipo que sea, necesita de una reflexión sobre lo que hacemos, muchas veces cambia nuestro modo de trabajar (actitud) y hace surgir problemas sobre las verdades que teníamos. En matemática los conocimientos utilizados pueden ser diferentes: comparar una construcción geométrica con regla y compás o con regla y escuadra (mecánica) o solamente con compás. En este curso se explora de manera activa el software Cabri II. En una primera etapa se realiza la construcción de triángulos -sus elementos secundarios- y circunferencias inscritas y circunscritas así como exploraciones de simetría. En una segunda etapa se elaboran macro construcciones o construcciones que podemos grabar, para luego reutilizar en figuras más complejas, sin necesidad de rehacerlas. A través de la exploración ya descrita se reflexiona sobre el aporte de esta herramienta al quehacer pedagógico y/o científico. El uso del software es muy cercano a la forma de pensar en la geometría clásica, lo que permite a los estudiantes acercarse a esta disciplina y hacer conjeturas. Corresponde advertir que, como Cabri II no es un software de dibujo ni de demostración sino que está basado en un ambiente numérico, hay errores de aproximación. aunque leves. Se inicia el curso explicando brevemente el funcionamiento del software Cabri II para pasar a realizar actividades de construcción y comprobación de relaciones geométricas.
Resumo:
Este articulo ilustra cómo un problema ambiguamente formulado admite diferentes lecturas y soluciones, permitiendo así distintas aproximaciones según el nivel y las capacidades del alumno. El problema de optimización es explorado en un entorno de geometría dinámica (The Geometer's Sketchpad). Esta aproximación geométrica facilita la formulación de conjeturas y su prueba visual, allanando el camino a la prueba analítica, si ésta se considera pertinente.
Resumo:
No es fácil experimentar, visualizar y hacer conjeturas cuando estudiamos la geometría del espacio. Con los paquetes de geometría dinámica se abren nuevas posibilidades de exploración. Aunque la mayoría de los paquetes fueron diseñados para trabajar en dos dimensiones, es posible realizar ciertas construcciones que nos permiten el estudio en el espacio. Las construcciones están basadas en el dibujo en perspectiva y en la proyección cilíndrica.