21 resultados para analiza transakcyjna
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Se analiza una clase de matemáticas de primero de bachillerato, en cuanto al concepto de límite de una función, bajo el marco teórico del enfoque ontosemiótico de la cognición matemática (Godino, 2002; Godino, Contreras y Font, 2006), utilizando las herramientas de la trayectoria y configuración instruccional, así como las configuraciones de referencia correspondientes a un proceso de estudio. Se discuten los resultados que se obtienen, haciendo explícitos ciertos fenómenos didácticos relacionados con los conflictos semióticos, y se describen los procesos dialógicas presentes en el aula, mostrando la complejidad ontosemiótico de dicho proceso de estudio.
Resumo:
La investigación que presentamos (Cobo, 1998) analiza las interacciones que se producen entre pares de alumnos en la resolución de problemas. Aunque no utilizamos la entrevista para recoger datos orales, la técnica que mostramos tiene elementos comunes a ella. La comparación de ambas puede abrir perspectivas de debate en cuanto a las semejanzas y diferencias respecto a la situación de observación, a los papeles comunicativos de los interlocutores, a la predeterminación del tema del diálogo, a las formas de analizar los datos obtenidos, etc. En las páginas siguientes hacemos una presentación general de la investigación, centrándonos, sobre todo, en la descripción de la técnica de recogida de datos orales que utilizamos, en el contexto en el que recogemos dichos datos y en el método de análisis que proponemos. En el Anexo mostramos, a modo de ejemplo, el resumen del microanálisis de uno de los episodios del proceso de resolución de un problema.
Resumo:
Se describe y analiza el desempeño de dos niños de educación primaria con edades comprendidas entre 6 y 7 años, en varias cuestiones y tareas sobre invención y resolución de problemas aritméticos verbales. Los resultados informan de su conocimiento informal sobre la idea de problema, los elementos que lo componen, el papel que juegan los números en un problema, y los factores que determinan que un problema sea difícil.
Resumo:
En esta comunicación se describe y analiza una experiencia en un aula TIC con alumnos de tercero de ESO en la que se utiliza Internet como fuente de información para profundizar en una construcción matemática de gran atractivo visual y de gran aplicabilidad en la modelización de la naturaleza, los fractales.
Resumo:
En este trabajo se aportan los resultados de una investigación, realizada con cuatro grupos de estudiantes de segundo de bachillerato de la Comunidad Autónoma Andaluza, sobre la incidencia de las pruebas de acceso a la universidad (PAU) en los significados de la integral definida, en cuanto a los posibles sesgos producidos. En primer lugar se detectan los significados de referencia que se comparan posteriormente con los obtenidos en las PAU, después se analiza el significado implementado en el aula. Por último, se dan algunas implicaciones para la enseñanza de la integral definida.
Resumo:
Los programas de estudio de Matemática en Costa Rica, proponen la Resolución de Problemas en contextos reales como estrategia metodológica principal y el Planteamiento de Problemas como uno de los cinco procesos matemáticos. Así, este estudio analiza algunos elementos que intervienen en el proceso de enseñanza y aprendizaje de contenidos matemáticos empleando dicha estrategia y el papel del planteamiento de problemas como actividad complementaria en dicho proceso. Los resultados muestran la importancia del trabajo del profesor como organizador y guía de la clase y del estudiante como responsable de resolver el problema; así como del gran valor educativo que tiene el planteamiento de problemas en el proceso de resolución de problemas.
Resumo:
En este trabajo se describe y analiza el programa GeoGebra. Este software nos permitirá crear construcciones y páginas web dinámicas de una forma fácil e intuitiva. Con el alumnado podremos trabajar con la propia aplicación o con los archivos html interactivos que se generan tras una sencilla exportación. El uso de GeoGebra no es complicado y no requiere dedicar sesiones específicas para la explicación de su funcionamiento. Desde el primer contacto con el mismo y con pequeñas aclaraciones por parte del profesorado, el alumnado será capaz de crear construcciones elementales. Conforme vaya utilizándolo con más frecuencia irá profundizando en sus posibilidades.
Resumo:
Se analiza la importancia de la inclusión del tema de sucesiones desde preescolar hasta el nivel medio superior en México. El marco teórico que da soporte a esta investigación es la Teoría de Representaciones Semióticas de Duval (1998), en combinación con el uso de tecnología TI-Nspire. Centramos la atención en el nivel medio superior, con la finalidad de que los alumnos a través del manejo de las representaciones semióticas: verbal, gráfica, tabular y analítica, adquieran el concepto de sucesión aún sin definirlo formalmente. A través del uso de representaciones semióticas instrumentadas en la calculadora TINSpire con ejemplos acordes al entorno del alumno (deportes, medio ambiente) se forma el concepto de sucesión. Paralelamente se insiste en la detección tanto del dominio, imagen y grafo; lo anterior con la finalidad de que el alumno visualice y detecte que el dominio de las funciones en juego siempre es el conjunto de los números naturales y la imagen un subconjunto de los números reales, así como de la relación funcional.
Resumo:
Uno de los puntos débiles del actual currículo de secundaria en Matemáticas es la enseñanza de la dispersión. Son varios los motivos que ocasionan esta debilidad. En este trabajo se analizarán brevemente algunas investigaciones que nos ayudarán en el aula y en la investigación a mejorar la comprensión de un concepto complejo como es la dispersión. Se indica la importancia de la dispersión en Estadística. Se comprueba que el concepto de dispersión no se incluye en los curriculos oficiales, se analiza el significado de la noción de dispersión y se ejemplifica el desarrollo histórico mediante el devenir a lo largo de la historia de las leyes del error. Finalizamos con unas conclusiones válidas para la enseñanza y la investigación.
Resumo:
Es bien sabido en el ámbito académico que muchos de los aspirantes a ingresar a los estudios de educación superior suelen tener preferencias por algunas áreas particulares, lo cual refleja un notable desequilibrio en algunas áreas del conocimiento, siendo la más afectada las Ciencias Básicas. Por tanto, este artículo analiza el perfil e inclinación vocacional en matemáticas de los estudiantes que ingresan a la educación superior. La experiencia se llevó a cabo con los estudiantes invitados al programa de Ciclo de Iniciación Universitaria (CIU) de la cohorte 2012, de la Universidad Simón Bolívar (USB), Sede Sartenejas, Venezuela. Se seleccionó una muestra de 108 estudiantes, a los cuales se les administro una encuesta diseñada para verificar su perfil e inclinación vocacional con hincapié en el área de matemáticas. Como resultados se observó, que considerando aspectos relacionados con las matemáticas de Bachillerato (Tercera Etapa de Educación Básica y Educación Media Diversificada y Profesional) como: desempeño, dominio, asistencia y preparación de los estudiantes, contribución a su futura carrera, desempeño y asistencia de los profesores, se pudo estimar su perfil en matemáticas y obtener una clasificación porcentual de: Deficiente 4%, Regular 13%, Aceptable 23%, Bueno 35% y Excelente 25%. Además, los datos mostraron que la inclinación vocacional del grupo favoreció a las carreras pertenecientes al área de ingeniería (72%). La investigación permitió concluir que: los datos recabados revelan que a pesar que los estudiantes tienen un perfil en matemáticas bueno, todavía no es suficiente para responder a las exigencias de la educación superior. También surge la necesidad de facilitar información detallada a los estudiantes desde sus estudios de Bachillerato, con la finalidad de orientarlos y prepararlos como futuros candidatos a una carrera relacionada con la profesión de matemáticas, despertando así en los estudiantes interés por estas carreras tan desfavorecidas y afectadas por el desequilibrio académico.
Resumo:
El artículo analiza las estrategias desarrolladas por estudiantes de nivel medio superior al resolver problemas matemáticos de la prueba PISA. El estudio toma como base las explicaciones escritas, verbales y gestuales presentadas por los estudiantes en el proceso de resolución de los problemas. Fueron caracterizadas dos tipos de estrategias: formales e informales. Las primeras, a partir de conceptos sobre objetos, relaciones y operaciones, así como de proposiciones y propiedades matemáticas y las segundas, por medio de transformaciones como la descomposición y recomposición de formas geométricas, asimismo, del uso de la estimación visual y estimación de medidas.
Resumo:
Este artículo forma parte de la investigación maestría de la autora. En este artículo se identifican qué tendencias cognitivas presentan estudiantes de bachillerato cuando se enfrentan al tema de tangentes a las cónicas en un curso de Geometría Analítica (UNAM, 1996). También se analiza si este curso permite una mejor comprensión de la sintaxis algebraica.
Resumo:
En esta investigación, en proceso, pretendemos el diseño, desarrollo y evaluación de Objetos de Aprendizaje (OA) lo que permitirá probar y validar una metodología de diseño y producción de OA al interior de la institución, así como la utilización de la Web como medio de interacción y cooperación entre individuos en los procesos educativos. La producción de OA con esta metodología se plantea bajo un equipo de trabajo que analiza las necesidades del grupo destinatario, los contenidos, los recursos tecnológicos, los procesos de evaluación, entre otros, para la producción de cada OA.
Resumo:
En la ponencia se analiza un material curricular oficial para las matemáticas de la educación secundaria, a la luz de los componentes de la noción de ‘Cultura de Racionalidad’: Creencias, Normas de Sustentación, Normas Heurísticas, y Normas sobre Reparto de Responsabilidades (entre otros aspectos). Se argumenta que el enfoque didáctico del currículum analizado, centrado en un enfoque hacia el descubrimiento –basado en procesos empíricos e inductivos–, va a ‘contraflujo’ en relación a otras propuestas curriculares internacionales (como las de Estados Unidos e Inglaterra), lo cual debe de alertar no sólo a las autoridades responsables del desarrollo curricular sino a todos los implicados con la educación matemática del país.
Resumo:
El presente trabajo forma parte de una investigación en la línea de la construcción social del conocimiento. El tema central de este reporte es la construcción escolar del infinito y las dificultades que éste concepto presenta debido a su origen sociocultural por un lado y matemático por otro. Se produce entonces un choque entre esos dos infinitos: el construido socialmente y desconocido por la escuela, y el matemático, que se utiliza en la escuela, pero es desconocido por los alumnos. Para indagar sobre la naturaleza del infinito con que se trabaja en el aula, se presenta y analiza una actividad, centrada en el estudio de funciones, y en particular de la existencia y cálculo de asíntotas que fue llevada a cabo con alumnos de escuela media. Las respuestas demuestran que el infinito construido fuera de la escuela sigue marcando en ellos la forma en que el infinito funciona y que el infinito matemático les presenta sólo conflictos y dudas.