15 resultados para Virgilio Marón, Publio.
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Los profesores de matemáticas tienen necesidad de herramientas funcionales y bien elaboradas conceptualmente para el ejercicio de su profesión. Una de estas herramientas es la noción de currículo, que hemos presentado resumidamente en este capítulo y que sustentamos en una serie de dimensiones mediante las que estructurar el concepto. Pero con el concepto de currículo el profesor de matemáticas no dispone aún de toda la información necesaria para llevar a cabo sus tareas profesionales. En los próximos capítulos presentaremos nuevos conceptos que completen el dominio conceptual fundado del profesor y que, al mimo tiempo, le proporcionen nuevas herramientas funcionales para su trabajo en el aula de matemáticas.
Investigación en Didáctica de las Matemáticas en el bachillerato y primeros cursos de la universidad
Resumo:
En este trabajo presentamos una revisión de las investigaciones que se han venido realizando en los últimos 20 años, tanto a nivel internacional como en nuestro país, en el campo de la Didáctica de la Matemática en la enseñanza post-obligatoria. En primer lugar, analizamos los estudios internacionales realizados en el seno del International Group for the Psychology of Mathematics Education (PME) y especialmente en el National Council of Teachers of Mathematics (NCTM), al objeto de mostrar un panorama general de la investigación en este ámbito. Posteriormente abordaremos los trabajos presentados en los Simposios de la Sociedad Española de Investigación en Educación Matemática (SEIM) y, en particular los del Grupo de Investigación Didáctica del Análisis Matemático, tomando como elemento organizador el contenido matemático. Finalmente estableceremos algunas conclusiones generales del estudio elaborado.
Resumo:
Esta comunicación aporta información sobre cómo un experimento de enseñanza en un entorno tecnológico usando applets elaborados con el programa de geometría dinámica Geogebra, ayudó a estudiantes de bachillerato (17-18 años) a construir distintas aproximaciones al concepto de función primitiva. Los resultados muestran por una parte que los estudiantes fueron capaces de relacionar distintas ideas usando argumentos variados para asociar la gráfica de una función con la de una de sus primitivas; en estos argumentos subyace principalmente la relación de este concepto con el de derivada. Por otra parte las soluciones aportadas se apoyaron más en el pensamiento visual que en el analítico.
Resumo:
Los estudiantes de enseñanza media se enfrentan al uso e interpretación de los parámetros en funciones polinomiales, lugares geométricos y expresiones algebraicas. Este hecho conduce a la necesidad de diferenciar los parámetros de otro tipo de literales como variables o incógnitas. Esta investigación indaga sobre la influencia que pueden tener dos entornos tecnológicos sobre la comprensión de la polisemia de las literales, bajo el telón de fondo de los Modelos Teóricos Locales y de la Aproximación Instrumental.
Resumo:
Esta investigación trata sobre las características de los ítems elaborados por las Comunidades Autónomas españolas en el curso académico 2008-2009 para atender la evaluación diagnóstica de la competencia matemática básica de los estudiantes de 2o de ESO. Se centra en su adecuación al modelo de evaluación de la competencia matemática establecido por el estudio PISA de la OECD, según considera el Ministerio de Educación y Ciencia. El estudio está basado en el análisis de los ítems incluidos en una muestra de cinco pruebas de diagnóstico cuyos resultados identifican sesgos y debilidades. Se concluye que para cumplir con el grado de ajuste adecuado a las evaluaciones PISA, es necesario que las Comunidades Autónomas revalúen el diseño de las pruebas a la luz de las variables de tarea definidas en su caracterización.
Resumo:
En este informe, presentamos el análisis de datos de una pareja de estudiantes durante la resolución de un problema de generalización en una clase de matemáticas de secundaria (15-16 años). De acuerdo con las teorías interaccionistas del aprendizaje matemático, asumimos que el discurso establecido en la interacción en pareja es un factor clave de influencia en los procesos de construcción de conocimiento matemático. Hasta ahora, los resultados ponen de relieve la relación entre el uso de ciertos indicadores discursivos y los avances en la "intención argumentativa" de las estudiantes. La mayoría de intercambios con intención argumentativa vienen precedidos o acompañados por refutación y cuestionamiento, y en menor grado, validación. La refinación del análisis actual se está realizando dentro del trabajo de tesis doctoral de la primera autora.
Resumo:
En este trabajo mostramos el potencial de los grafos trinomiales como herramienta para el análisis de las resoluciones de problemas ternarios de probabilidad condicional. Mostramos el análisis de dos resoluciones correspondientes a sendos estudiantes de 4o de ESO resolviendo un problema de probabilidad condicional de nivel N0.
Resumo:
En este trabajo se aportan los resultados de una investigación, realizada con cuatro grupos de estudiantes de segundo de bachillerato de la Comunidad Autónoma Andaluza, sobre la incidencia de las pruebas de acceso a la universidad (PAU) en los significados de la integral definida, en cuanto a los posibles sesgos producidos. En primer lugar se detectan los significados de referencia que se comparan posteriormente con los obtenidos en las PAU, después se analiza el significado implementado en el aula. Por último, se dan algunas implicaciones para la enseñanza de la integral definida.
Resumo:
Analizamos el sentido estructural que estudiantes de entre 16 y18 años de edad ponen de manifiesto al trabajar con expresiones algebraicas, en el contexto de la simplificación de fracciones algebraicas que involucran las igualdades notables cuadrado de la suma, cuadrado de la diferencia, diferencia de cuadrados y propiedad distributiva/factor común. La identificación y clasificación de las estrategias empleadas por los estudiantes nos permite diferenciar tres modos de actuación que evidencian diferentes niveles de sentido estructural. Este análisis nos permite distinguir un amplio espectro de niveles de sentido estructural y avanzar en la comprensión del constructo sentido estructural que informa sobre las habilidades necesarias para hacer un uso eficiente de las técnicas algebraicas en tareas escolares.
Resumo:
Se muestran los resultados de una encuesta sobre las opiniones del profesorado de Matemáticas de secundaria en Galicia, relativa a la instrucción sobre el concepto de "Límite funcional" En esta comunicación se presentan sólo tres aspectos relacionados con el tema de una investigación más amplia: El profesorado opina sobre el nivel adecuado en que considera se debería impartir la noción de límite de funciones en los itinerarios del Bachillerato o en la ESO; se identifican algunos referentes que utiliza en su introducción, y finalmente, se recuentan instrumentos, técnicas y herramientas que el profesorado utiliza habitualmente en la instrucción de este objeto matemático. Transversalmente se trata de ver en qué grado el contexto general del aula condiciona las estrategias, herramientas y procedimientos.
Resumo:
Una vez realizado el análisis de contenido, en el que el foco de atención es el tema matemático que se va a enseñar, y examinado el aprendizaje del estudiante en el análisis cognitivo, en el aná-lisis de instrucción vamos a estudiar qué medios dispone el profesor para lograr sus fines. El foco de atención será la enseñanza. Se trata de hacer una descripción de los medios que va a poner en práctica el profesor para lograr sus expectativas de aprendizaje.
Resumo:
Se presenta un avance de una investigación de tipo cualitativo en la cual se busca identificar las características de razonamiento presentadas en estudiantes de grado quinto al momento de enfrentarse a situaciones de tipo variacional; dichas características se discuten a la luz del marco conceptual para la covariación propuesto por Carlson, Jacobs, Coe, Larsen, y Hsu (2003). Desde las situaciones, se desprenden algunas implicaciones y recomendaciones para su implementación en el aula de clase, específicamente para un acercamiento a nociones como: función y tasa de variación, las cuales se encuentran en las bases propias del razonamiento covariacional y pueden abordarse desde los primeros grados de escolaridad como una manera de crear cimientos en la comprensión de los conceptos más relevantes del cálculo.
Resumo:
Una de las intenciones que subyacen al diseño de un módulo de esta maestría dedicado al análisis de datos es entender que la fase de implementación en el aula de la unidad didáctica puede entenderse como un experimento en el que la gran mayoría de los instrumentos concebidos para extraer información ya se diseñaron en el módulo 5. Una vez preparados los documentos que planifican el proceso de enseñanza en los módulos 1 al 4 y los instrumentos que servirán de referencia para evaluar los procesos de enseñanza y aprendizaje durante y después de la implementación (módulo 5), este módulo, sobre análisis de datos, se centra en la organización y análisis de los datos que se producirán durante la implementación en el aula de la planificación de la unidad didáctica. Otra de las intenciones, que se entrecruza con la anterior, fue ampliamente desarrollada en el módulo sobre análisis de actuación: la información procedente de los instrumentos de evaluación ayuda a mejorar el aprendizaje del alumno y a modificar la propia práctica de la enseñanza.
Resumo:
Generalmente, los estudiantes de bachillerato y universitarios tienen dificultades para comprender los conceptos más elementales de probabilidad y estadística. La presentación de conceptos abstractos de una forma visual y dinámica puede ayudar a comprenderlos mejor. La simulación de experimentos aleatorios ayudará a conseguirlo. Presentamos a continuación algunas de las actividades preparadas para ello.
Resumo:
Una de las intenciones que subyacen al diseño de este módulo, dedicado al análisis de datos, es entender que la fase de implementación en el aula de la unidad didáctica puede entenderse como un experimento en el que la gran mayoría de los instrumentos concebidos para extraer información ya se diseñaron en el análisis de actuación. Una vez preparados los documentos que planifican el proceso de enseñanza en los módulos 1 al 4 y los instrumentos que servirán de referencia para evaluar los procesos de enseñanza y aprendizaje durante y después de la implementación (módulo 5), este módulo se centra en la organización y análisis de los datos que se producirán durante la implementación en el aula de la planificación de la unidad didáctica. Entre los datos obtenidos y que ayudarán a mejorar el aprendizaje del estudiante y a modificar la propia práctica de la enseñanza, este módulo se centrará en el aprendizaje, mientras que, en el módulo 7, se completará el análisis de datos que tienen que ver más con el proceso de enseñanza.