11 resultados para Transformações de fase (Física estatística)
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Hoje encontramos estatística nos currículos de matemática da maioria dos países. Em Portugal, a estatística é ensinada nas aulas de matemática por um professor de matemática até ao ensino universitário. As orientações curriculares para o ensino da Estatística referem a necessidade de os alunos colocarem questões, recolherem, organizarem e representarem dados através de uma investigação. Uma forma de o fazer é implementando estratégias de trabalho colaborativo na sala de aula. Esta forma de trabalho cria oportunidades de enriquecer o poder estatístico dos alunos pois discutem e explicam ideias, expõem, avaliam e refutam argumentos e resoluções. Nesta comunicação procura-se reflectir sobre as vantagens do trabalho colaborativo nas aulas de estatística, incluindo a nossa própria investigação sobre o tema.
Resumo:
La presente ponencia resume el inicio de la construcción de un laboratorio de física y matemáticas en el programa de la Licenciatura en Matemáticas y Tecnologías de la Información, de la Universidad La Gran Colombia. Se presenta la experiencia en el diseño de la primera actividad y de los constructos teóricos y prácticos que se tuvieron en cuenta. Esta experiencia de aula está avalada dentro de la conformación de un semillero de investigación de la facultad, y muestra cómo a partir de un sistema masaresorte se pueden construir algunos conceptos fundamentales como el período de funciones, el comportamiento de las mismas y destacar la importancia del modelado de datos para su respectivo análisis y obtener así una aproximación por medio de la matemática.
Resumo:
O estudo tem como objetivo descrever e analisar as estratégias de memória na aprendizagem de Estatística de 175 alunos do Ensino Médio de escolas públicas da Grande São Paulo. Os dados foram coletados em 2011. A abordagem histórico-cultural considera a autorregulação da memória na aprendizagem como um processo consciente que requer do indivíduo estabelecimento de metas, com base em suas expectativas, e o uso de estratégias para alcançá-las. Os resultados mostraram que os alunos praticam a repetição de exercícios para memorizar e não buscam intencionalmente prestar a atenção na aula para aprender e memorizar. Os alunos demonstraram pouco envolvimento com estratégias de memória para a aprendizagem. Apesar de afirmarem que a disciplina é importante e apesar do incentivo de docentes para uso de estratégias de aprendizagem, a prática de estudo de Estatística vincula-se a processos mecanicistas.
Resumo:
A atividade que descrevemos teve como objetivo possibilitar aos alunos e professores supervisores bolsistas do Programa de Bolsas de Iniciação à Docência - PIBID do curso de Matemática da Universidade Federal do Triângulo Mineiro em Uberaba, Minas Gerais, a prática da estatística através de atividades de ensino utilizando projetos. Assim, através da aplicação de um questionário a 198 alunos do 3º ano do Ensino Médio de duas escolas estaduais pretendeu-se compreender os problemas que afetam a escolha profissional e a motivação ou não em continuar os estudos. Os resultados indicaram que a maioria dos alunos pretende dar continuidade aos estudos e o que dificultaria esse processo seria: condições financeiras e disponibilidade de tempo. Evidenciamos que as atividades de organização de pesquisa de campo, coleta, tabulação de dados, interpretação e análise dos dados despertou o espírito investigativo nos alunos.
Resumo:
Este artículo trata de la enseñanza y el aprendizaje de la modelación matemática en los cursos de física y de matemáticas. En el 2002, un nuevo currículo para el bachillerato en Francia acentuó el papel de las matemáticas como una herramienta para modelar en otras ciencias. Una descripción del proceso de modelación es presentada, así como el análisis de los manuales comúnmente usados en estos cursos. Este análisis revela el proceso de transposición del "proceso de modelación" practicado por los expertos y el proceso que es adaptado finalmente a la escuela. La implementación de una situación experimental con tareas no habituales permite la identificación de la influencia de las praxeologías en los procesos de los estudiantes. La vinculación de algunas dificultades presentes al abordar la situación con la transposición del proceso de modelación también es discutida en este artículo.
Resumo:
La introducción de nuevos planes de estudio en Francia (2002), muestra la importancia que tiene actualmente la enseñanza y aprendizaje de la modelación, principalmente en disciplinas científicas como Matemáticas y Física. En los programas oficiales y libros del último año de preparatoria se observa la introducción de la noción de ecuación diferencial como objeto de estudio pero también como herramienta para modelar diversas situaciones físicas. En esta investigación, estableceremos un modelo del proceso de modelación que constituya una referencia para posteriormente caracterizarlo, desde un punto de vista antropológico, en dos instituciones diferentes: la clase de matemáticas y la clase de física.
Resumo:
El uso de software de geometría dinámica en el aula de clase es una herramienta que posibilita el desarrollo de diferentes habilidades y destrezas en el campo geométrico y potencializa otras tales como la visualización, la elaboración de conjeturas, la argumentación, la construcción de definiciones y la formalización de argumentos. El presente trabajo busca compartir la experiencia alcanzada con la aplicación de tres actividades exploratorias con polígonos y ver las posibilidades y limitaciones que el software ofrece en el desarrollo conceptual alrededor de los mismos.
Resumo:
El presente trabajo tiene la intención de analizar las fases de las prácticas de modelación en la escuela y el papel de la analogía como una de ellas. Las prácticas de modelación las caracterizamos como prácticas recurrentes de diferentes comunidades que articulan dos entidades (fenómenos y sus referentes matemáticos) con la intensión de intervenir en una de ellas a partir de la otra. Esta caracterización plantea de entrada la interacción con el fenómeno, esto define a la primera fase, emergiendo la experimentación en el sentido amplio. La segunda fase, la caracterizamos como el acto de modelar, en donde se realiza la articulación por medio de alguna acción de las entidades participantes; la tercera fase es la articulación de los modelos con el fenómeno en una red. Una cuarta fase es la analogía que descentra la red de modelos del fenómeno original que le dio lugar. En esta fase se pretende la articulación de redes de modelos, dando lugar a redes de redes.
Resumo:
Una pregunta que me plantean con mucha frecuencia los estudiantes es ¿qué significado tiene la integral?; con este trabajo pretendemos incursionar en la problemática referida a la formación de la significación física de la integral, para lograrlo partimos de la idea de que esa significación tiene que ver por un lado con las concepciones matemáticas “heredadas” por los profesores a sus alumnos y por otro con los procesos de matematización de fenómenos en diversos contextos. Hemos realizado un primer acercamiento exploratorio para recoger evidencias, que nos permita elaborar una secuencia basada en prácticas de modelación de fenómenos. Reportamos como es construida la significación física de la integral en el discurso. Un resultado consecuente, es una aproximación a la concepción de práctica social.
Resumo:
La matemática en el contexto de las ciencias es una línea de investigación que reflexiona acerca de la vinculación que debe existir entre la matemática y las ciencias que la requieren, está constituida por cuatro fases: la curricular, la didáctica, la epistemológica y la cognitiva. En este artículo se presenta la fase didáctica. Esta fase incluye una estrategia didáctica (denominada matemática en contexto)que presenta conocimientos integrados a los alumnos a partir de una situación problémica de otras disciplinas, que al tratar de resolverla el estudiante se encuentra con la necesidad de tener nuevos conocimientos, lo cual da apertura a que el estudiante esté interesado en otros tópicos matemáticos. Para lograr la vinculación de la matemática con otras ciencias se describe un proceso metodológico a través de seis de las etapas de la matemática en contexto. Con esta estrategia el modelar matemáticamente está presente todo el tiempo, por lo que se presentan los resultados de una investigación que caracteriza y clasifica a los modelos matemáticos. Asimismo, los modelos son un elemento común a la matemática en contexto y a la resolución de problemas, por lo que se muestran las diferencias sustancias entre ambas estrategias.
Resumo:
Con la popularización de las calculadoras electrónicas el cálculo logarítmico en sí mismo fue perdiendo espacio y en forma gradual se fue abandonando su enseñanza. Pero el tema “logaritmos” sigue presente en los “programas”. Es muy difícil lograr un aprendizaje sustancial y por lo tanto duradero si en el momento de abordar el tema nuestros alumnos no le encuentran significado. Así que procuramos dárselo. Para ello, aspiramos a un desarrollo conceptual muy distante del puro entrenamiento algebraico al que se fue limitando la práctica de la enseñanza de este tema.