30 resultados para Representación proporcional - Colombia

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

En este trabajo se realiza un estudio que conduce a la obtención de fórmulas electorales, basadas en sucesiones de divisores, que aseguran una representación proporcional a la hora de asignar los escaños en cada circunscripción. Se ha encontrado una familia de fórmulas a la que pertenecen como casos particulares D’Hondt, StLagüe, Imperiali y el método Danés. De las propiedades matemáticas de las fórmulas obtenidas se deducen ventajas e inconvenientes que va a tener el uso de cada una de ellas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Al respecto de las múltiples angustias surgidas por docentes de matemáticas en formación entorno a las dificultades y errores evidenciados por estudiantes de básica segundaria y media en la construcción de pensamiento algebraico, se expone a continuación para el caso de la generalización algebraica los hallazgos logrados desde la investigación que recupera en primera instancia a manera de reseña los referentes teórico conceptuales, las definiciones pertinentes y la clasificación de las dificultades y errores en la educación matemática especialmente en el caso de algebra; de igual manera se detallan características y acuerdos conceptuales entorno a razonamiento, razonamiento algebraico; esta ponencia evidencia los presupuestos e ideales para la educación matemática y la enseñanza del algebra para finalmente establecer la relación y justificación conceptual entre: sistemas de representación (errores); las dificultades (comprensión) y razonamiento algebraico. Con la exposición de ejemplos logrados en las experiencias de aula y analizados producto del trabajo de campo en este estudio, se presenta a manera de propuesta los comentarios, reflexiones y recomendaciones que permitirán al futuro docente de matemáticas diseñar un modelo de competencia formal y cognitivo para entender y actuar en situaciones de la enseñabilidad que se dan en el entorno educativo en especial en relación al razonamiento algebraico.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En la Educación Matemática es ampliamente reconocida la importancia de la investigación de los factores que influyen o generan procesos de aprendizaje, que ayuden a los estudiantes a construir de manera significativa los objetos matemáticos. En el marco de esta propuesta, se reconoce que la investigación actual de carácter cognitivo en educación matemática, evidencia que los problemas de comprensión que presentan los estudiantes tienen que ver tanto con el contenido enseñado, como con la complejidad de la construcción de los saberes, es decir, con los funcionamientos propios que constituyen la parte operativa del pensamiento.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En esta comunicación ponemos de manifiesto la importancia del estudio de los poliedros en la Enseñanza Secundaria y su utilidad para el desarrollo y la comunicación de ideas matemáticas. Con esta intención planteamos una serie de tareas que permiten al profesor y al alumno trabajar los poliedros potenciando el lenguaje en el aula de matemáticas y las capacidades espaciales del alumno. Las tareas aquí presentadas fueron realizadas en unas Jornadas de Investigación en el aula de matemáticas organizadas por la Sociedad de Profesores de Matemáticas THALES en Granada con la participación de profesores de distintos niveles educativos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En esta propuesta queremos dar a conocer un taller que consideramos fiable, para ser puesto en el aula de clase y puesto a prueba en el área escolar, especialmente en bachillerato en el área de matemáticas; donde el niño se enfrentará al descubrimiento por sí solo de lo que sucede en una figura y a partir de regularidades, patrones; pueda expresar lo que encuentra desde la representación gráfica y tabular para llegar a la representación algebraica y a el significado y esencia del concepto de sucesión. Esta propuesta busca a través de figuras espiraladas introducir el trabajo con sucesiones donde se le propone al estudiante enfrentarse a una situación (observación de las figuras espiraladas) donde a partir de lo que ve: identifique, analice y deduzca el comportamiento de lo que sucede y pueda llevar esto a un lenguaje verbal y escrito con ayuda de representaciones gráficas y tabulares que le ayudarán a establecer regularidades y que permitirán dar sentido a lo que sucede con las figuras espiraladas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se busca generar una discusión sobre el proceso de diseño y sistematización de una experiencia de aula en la cual se integra el Ambiente de Geometría Dinámica (AGD) Cabri 3D en el aprendizaje de la transformación de rotación en el espacio. En nuestra propuesta, encontramos investigaciones importantes en didáctica de las matemáticas que han puesto en evidencia las dificultades que los estudiantes presentan comúnmente en la exploración de propiedades de los objetos geométricos en el espacio, e incluso la representación de los mismos en él. Por lo cual, la comunicación se apoya en una aproximación instrumental que busca dar cuenta del papel mediador de Cabri 3D como un instrumento construido por el sujeto en el contexto de aprendizaje de la geometría. La propuesta se basa en el diseño de una situación didáctica en la que se integra el AGD Cabri 3D; hemos introducido una categoría que caracteriza el objeto matemático a movilizar en la secuencia de situaciones didácticas, esta categoría es la transformación de rotación en el espacio. La primera caracterización debe darse desde el reconocimiento de la Geometría transformacional como una alternativa para que los estudiantes construyan conocimiento del espacio a partir de la exploración y actuación sobre el mismo, así en la propuesta de la secuencia didáctica se tomara en consideración que la transformación de rotación posibilita la exploración de aspectos complejos tales como el sentido, la magnitud angular y la invarianza de propiedades. Esta última (la invarianza de propiedades) es uno de los aspectos más importante que se deberán distinguir en el diseño de la secuencia didáctica; en la composición de rotaciones por ejemplo, se reconoce como importante que los estudiantes tengan la capacidad de poder determinar cuáles objetos geométricos, puestos en juego en la transformación, conservan sus propiedades, así como poder determinar dentro de la rotación qué se conserva invariante. La segunda caracterización es el reconocimiento de la visualización como medio para que el estudiante interprete la información gráfica de conceptos matemáticos que se le presentan, con el fin de resolver un problema y realizar conjeturas acerca de la noción matemática que está trabajando. La pregunta central para animar la discusión en torno a nuestra comunicación es la siguiente: ¿Cómo influye el uso de Cabri 3D en el estudio del espacio y la exploración de la noción de transformación de rotación en el espacio?, ¿En la organización de la clase y los dispositivos que se deben implementar en la misma?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este trabajo se reportan los resultados obtenidos con 39 estudiantes del Instituto Santa María Goretti de Bucaramanga, institución que viene participando en el proyecto “Incorporación de Nuevas Tecnologías en el Currículo de Matemáticas de la Educación Básica y Media de Colombia” desde el año 2002, quienes dieron solución a un problema de una carrera de fórmula 1, donde Juan Pablo Montoya sale de pits con una aceleración de 4 m/seg2 y en ese mismo instante pasa Michael Schumacher con una velocidad constante de 252 Km/hora. Este problema fue simulado en Cabrí Geometry en una pista circular, para el estudio de las funciones lineal y cuadrática. El trabajo con la simulación permitió que las estudiantes identificaran con mayor precisión las variables y no variables y que a través de la toma de datos y análisis de ellos llegaran a obtener diferentes representaciones (numérica, grafica, tabular, algebraica) de las funciones lineal y cuadrática. Además de relacionar los conceptos aprendidos en el estudio del movimiento uniforme y uniformemente acelerado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uno de los objetos matemáticos que los alumnos manipulan algebraicamente, sin saber su significado, es el concepto del límite matemático. Ejemplo de tal situación son los estándares de evaluación de algunos libros sobre el tema: “aplico las propiedades para hallar límites de funciones sencillas”, “calculo límites infinitos o al infinito de funciones racionales”, entre otros. La presente propuesta pretende que a partir de problemas el alumno construya el significado del límite y del infinito en matemáticas. La propuesta está basada en los sistemas de representación y el modelamiento funcional.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presentamos los primeros resultados de un estudio exploratorio sobre el desarrollo del conocimiento didáctico de futuros profesores de matemáticas con respecto a las nociones de estructura conceptual y sistemas de representación. Estos resultados se obtuvieron al codificar y analizar las grabaciones de clase y las producciones de estudiantes del último curso de Matemáticas en una asignatura de didáctica de las matemáticas. Se encontró que las producciones y las actuaciones de los alumnos pasan por diferentes estados que permiten identificar tanto algunas dificultades, como momentos en los que surgen reorganizaciones conceptuales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En el presente trabajo se aborda el estudio de la variación de una función cualquiera cuando se tiene sólo su representación gráfica y no se conoce su representación algebraica, así como la relación de la función con su primera y su segunda derivada y la relación entre tales derivadas, esto es, la información que puede proporcionar cada derivada acerca de la función y la información que aporta cada derivada con respecto a la otra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente trabajo se realiza bajo la visión Socioepistemología la cual adopta a las prácticas sociales como el motor que permite la construcción del conocimiento. Desde esta perspectiva nuestro trabajo toma las prácticas de modelación matemática como el eje que guía nuestro diseño; donde el objetivo es la construcción de lo Inversamente Proporcional (IP) por medio de la interacción de los modelos analítico, numérico y el planteamiento de la situación. El papel que le otorgamos al contexto es primordial para poder dotar de significado lo IP. Presentamos el desarrollo y los resultados obtenidos del diseño de aprendizaje elaborado con base en la Ingeniería didáctica de Artigue (1998). El reporte es parte de una investigación en curso.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En esta conferencia presentaré algunos resultados del estudio realizado sobre un fenómeno relacionado con la articulación de los sentidos asignados por estudiantes a diferentes representaciones de un objeto matemático, obtenidas mediante transformaciones semióticas de tratamiento. En este estudio describí y analicé algunos procesos de asignación de sentidos logrados por los estudiantes de grados 9o y 11o de educación básica y media (Colombia), en relación con tareas específicas en las que requieren realizar dichos tratamientos entre representaciones, y reporté algunas dificultades asociadas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frecuentemente, se hace énfasis en la enseñanza y aprendizaje de las matemáticas movilizar diversos registros de representación de una misma gestión. Sin embargo, el tratamiento de conversión de una representación en una representación de otro registro no es fácil y en ocasiones hasta imposible. Al respecto, Duval (1988) señala: “cuando se efectúa la conversión ecuación → gráfico no surge ninguna dificultad, pero todo cambia cuando se hace la conversión inversa”. Este aporte es muy sobresaliente e induce a investigar la naturaleza de esta problemática. En este sentido, nuestro trabajo de investigación está enfocado en identificar algunas dificultades que puedan presentar los estudiantes al tratar de poner en correspondencia el registro gráfico con el algebraico. Para ello, se aplicaron actividades donde se exponen algunos valores visuales de la gráfica, con el fin de establecer una correspondencia entre esos valores visuales de la recta y su respectiva escritura algebraica, así como, establecer un sistema para las diferentes categorías de tres rectas en el plano.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se aborda, desde una perspectiva socioepistemológica, la construcción del conocimiento y el desarrollo del pensamiento proporcional buscando generar espacios de reflexión y de interacción con el profesorado y el estudiantado que posibiliten la resignificación del conocimiento institucionalizado. Recurre entre otras fuentes y técnicas, al análisis de textos didácticos clásicos y contemporáneos, con el objeto de visualizar la naturaleza y evolución de los saberes matemáticos y escolares en juego, y, decidir aspectos necesarios a los diseños de secuencias didácticas en orden a favorecer la significación de fracciones, razones y proporciones como conceptos-herramientas en el estudiantado en el ámbito de la proporcionalidad. Tiene el objetivo de comprender de qué manera las prácticas que toman lugar en el aula, contribuyen al desarrollo del pensamiento proporcional de los estudiantes, en los niveles 5º al 10º de la escolaridad obligatoria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El estudio de la primera representación adquiere un papel determinante en la actividad de la resolución de problemas, ya que se presenta entre la percepción del problema y el proceso de resolución. El presente trabajo, plantea la posibilidad de desarrollar la formulación de problemas para enriquecer el contenido de la primera representación, permitiendo explorar nuevas representaciones para identificar la organización de sus relaciones y establecer su articulación en problemas contextualizados.