16 resultados para LABORATORIO FARMACÉUTICO CINFA - ESTUDIO DE CASOS
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
AUTONOMÍA ESCOLAR Y PLANIFICACIÓN EN MATEMÁTICAS La autonomía escolar se estableció en Colombia en 1994, con la intención de que las instituciones educativas adaptaran el currículo a su contexto. Como consecuencia, instituciones y profesores se hicieron responsables del diseño curricular en todas las áreas, con la guía de lineamientos curriculares publicados por el gobierno. Estos diseños curriculares que se plasman en el plan de área. En este trabajo caracterizamos los planes de área de matemáticas en una muestra de conveniencia de 18 colegios de educación básica secundaria y educación media de Bogotá y sus cercanías y exploramos en qué medida se llevan a la práctica los lineamientos gubernamentales en esos documentos. Codificamos los planes de área teniendo en cuenta las cuatro componentes del currículo: el contenido, los objetivos, la metodología y la evaluación. Para cada una de estas componentes, establecimos:1. el nivel de generalidad con el que se trata, 2. los términos que las instituciones utilizan para referirse a ella y 3. la coherencia y la estructura con la que las instituciones la describen. Los resultados ponen de manifiesto la variedad de aproximaciones de las instituciones de la muestra a la planificación del área de matemáticas. Esta variedad se constata en el número de niveles de generalidad que aparecen en los documentos, en la diversidad de términos que se utilizan para referirse a cada uno de los componentes curriculares y en el nivel de detalle con que se describen. Los resultados sugieren que, en las instituciones de la muestra en las que las ideas de estándar y competencia aparecen en el plan de área, estas ideas no juegan un papel organizador del diseño curricular. Así mismo, los resultados muestran que no existe un significado compartido para los términos “estándar”, “objetivo”, “logro” o “desempeño” entre los documentos de la muestra. Adicionalmente, hemos observado que no se constata coherencia entre esta expectativa de aprendizaje y el contenido propuesto dentro de la planificación. Estos resultados nos llevan a conjeturar que, en las instituciones a las que pertenecen los documentos de la muestra, no existe una aproximación sistemática, estructurada y fundamentada a la planificación curricular.
Resumo:
El artículo analiza las estrategias desarrolladas por estudiantes de nivel medio superior al resolver problemas matemáticos de la prueba PISA. El estudio toma como base las explicaciones escritas, verbales y gestuales presentadas por los estudiantes en el proceso de resolución de los problemas. Fueron caracterizadas dos tipos de estrategias: formales e informales. Las primeras, a partir de conceptos sobre objetos, relaciones y operaciones, así como de proposiciones y propiedades matemáticas y las segundas, por medio de transformaciones como la descomposición y recomposición de formas geométricas, asimismo, del uso de la estimación visual y estimación de medidas.
Resumo:
El propósito de este reporte de investigación es el de compartir algunas creencias y concepciones de un profesor de matemática de una institución pública de enseñanza secundaria y de sus alumnos de décimo año acerca del tema de funciones y del uso de tecnologías digitales en el proceso de enseñanza y de aprendizaje de las matemáticas. La investigación desarrollada es de tipo cualitativo y los datos fueron obtenidos mediante la aplicación de varios instrumentos y la observación en el aula.
Resumo:
En este trabajo resumimos un estudio empírico llevado a cabo con estudiantes de bachillerato con la intención de explorar y describir los distintos significados vinculados al concepto de límite que los estudiantes pueden poner de manifiesto al abordar tareas que involucran la relación entre varios sistemas de representación. Describimos algunos aspectos del lenguaje utilizado por los escolares en sus interpretaciones, profundizando en las concepciones intuitivas a las que dan lugar, seguido de la exploración del manejo de otros sistemas de representación por parte de los escolares como el simbólico a la hora de interpretar gráficas de funciones.
Resumo:
En este trabajo presentamos las posibilidades del análisis secuencial y la técnica de coordenadas polares para describir y analizar el proceso de resolución, por parejas, de un problema de optimización mediado por una i-actividad. Iniciamos el trabajo con algunos antecedentes teóricos y la descripción de las técnicas del análisis secuencial y de coordenadas polares. Finalmente ejemplificamos y describimos el potencial de estas técnicas.
Resumo:
En esta comunicación reportamos algunos avances de una investigación en la que pretendemos que los estudiantes reconozcan variables propias de un contexto cafetero para la constitución de sus propios modelos matemáticos en un proceso de modelación. La investigación se viene adelantando con metodología cualitativa puesto que nos posibilita hacer un estudio detallado en el contexto, debido a que posee un fuerte componente descriptivo que permite a través de la recolección de datos una profunda y significativa comprensión En esta comunicación reportamos algunos avances de una investigación en la que pretendemos que los estudiantes reconozcan variables propias de un contexto cafetero para la constitución de sus propios modelos matemáticos en un proceso de modelación. La investigación se viene adelantando con metodología cualitativa puesto que nos posibilita hacer un estudio detallado en el contexto, debido a que posee un fuerte componente descriptivo que permite a través de la recolección de datos una profunda y significativa comprensión.
Resumo:
El presente artículo es un producto derivado de la investigación: “La elipse como lugar geométrico a través de la geometría del doblado de papel en el contexto de Van Hiele”, en la que se analizó el proceso de comprensión del concepto de elipse como lugar geométrico, de cinco estudiantes del grado décimo de una Institución Educativa de la ciudad de Medellín. El estudio de casos cualitativo permitió el establecimiento de los descriptores de los niveles de razonamiento de Van Hiele que caracterizaron dicho proceso de comprensión y a su vez, iluminaron la creación de un guion de entrevista de carácter socrático, que se convirtió en una experiencia de aprendizaje para los estudiantes en tanto que les permitió avanzar en su nivel de razonamiento.
Resumo:
En este trabajo se realiza un estudio sobre el contenido estadístico en la PAU del Distrito de Canarias. Se observa que los alumnos prefieren las preguntas de Estadística, y que el uso de los gráficos en la resolución de los problemas, conlleva a que obtengan calificaciones más altas. El análisis de los errores nos permite realizar ciertas propuestas para mejorar el proceso de enseñanza-aprendizaje de la Inferencia Estadística. Creemos conveniente para la asimilación de los conceptos y el desarrollo del razonamiento estadístico el uso de las analogías, el manejo de las TICS y el trabajo de proyectos con datos reales.
Resumo:
En este informe se presentan algunos de los resultados de una investigación de tesis doctoral (Arnal, 2013) sobre el diseño, la implementación y la evaluación de una situación escolar de enseñanza y aprendizaje de la Geometría en un entorno tecnológico con alumnado de secundaria. En un informe anterior (Arnal y Planas, 2013) se documentaron dos resultados sobre aprendizaje derivados de la construcción del caso de un alumno. Ahora documentamos dos resultados sobre la actividad docente de un profesor. Por un lado, indicamos el efecto del uso de un programa de geometría dinámica en la superación parcial de percepciones limitadoras sobre la capacidad matemática de una alumna. Por otro, señalamos las reticencias ante el aprovechamiento del entorno tecnológico en el apoyo de la participación matemática de los alumnos.
Resumo:
La investigación que reportamos, da cuenta de un estudio sobre la comprensión del concepto Elipse en estudiantes entre 16 y 18 años, bajo un enfoque cognitivo, donde se utiliza los modos de pensamiento de Anna Sierpinska como marco teórico y, estudio de casos como diseño metodológico. Nuestra problemática se sitúa al abordar la elipse solamente a través de las ecuaciones cartesianas, afirmamos que estas técnicas no son suficientes para lograr una comprensión profunda del concepto, cuando decimos comprensión profunda, estamos pensando en que el estudiante pueda comprender la elipse en los modos: Sintético-Geométrico (como sección cónica en el espacio/curva que la representa en el plano), Analítico-Aritmético (como pares ordenados que satisfacen la ecuación de la elipse) y Analítico - Estructural (como lugar geométrico). A lo largo de la investigación evidenciamos que los estudiantes logran una mayor comprensión del concepto elipse cuando se enfrentan a situaciones donde interactúan los tres modos de pensar.
Resumo:
Este artículo presenta los resultados de una investigación realizada en alumnos de primer año medio del Liceo Eleuterio Ramírez de Osorno. El objetivo de dicha investigación era conocer el desarrollo del pensamiento geométrico en el tema de transformaciones isométricas según la Teoría de Van Hiele. La metodología de investigación es cualitativa, específicamente mediante estudio de casos. La recolección de datos se realizó mediante un seguimiento en el desarrollo de las actividades planteadas, observación de participantes y entrevistas. Como resultado se obtuvo que los alumnos mayoritariamente exhiben características del nivel 1 de reconocimiento para la isometría de simetría.
Resumo:
Se reporta un estudio de casos realizado con estudiantes de 16-17 años en relación con sus concepciones sobre la gráfica de una función lineal de dominio discreto. En este estudio detectamos que los alumnos presentan dificultades en concebir la gráfica de una función cuando su dominio no es el conjunto de los números reales pues no consideran como gráficas de funciones a aquellas que sean un conjunto de “puntos” y que no formen una “línea continua”.
Resumo:
Interesa a este estudio detectar modos de razonamiento matemático propiciados en los alumnos desde las prácticas docentes de los profesores. Se pretende hacer un estudio de casos en donde se identifiquen estos razonamientos. Algunas de las preguntas guía de este estudio son: ¿Qué relación hay entre los propósitos de la asignatura con el perfil de egreso de la educación media superior? ¿De que manera influye la formación del profesor en su práctica docente y que modos de razonamiento desarrolla dentro de esta? ¿Qué es lo que busca el profesor en la bibliografía y qué fuentes consulta y dónde las consulta? ¿Cuál es la dinámica ambiental dentro del aula? ¿qué tipo de actitudes se generan en el aula? ¿se favorecen sujetos críticos y reflexivos, con la posibilidad de expresarse y de preguntarse? ¿Qué tipo de actitudes muestran los alumnos? bajo la perspectiva de los modos de pensamiento analizados por Sierpinska, quien maneja los modos geométrico–sintético, analíticoaritmético y analítico-estructural. Frente a los altos índices de reprobación de los alumnos de Bachillerato General en la asignatura de Álgebra, surge el desafío para los docentes de reemplazar la memorización por una comprensión más profunda. Lo que se pretende es que las matemáticas sean, para el estudiante, herramientas funcionales y flexibles que le permitan resolver las situaciones problemáticas que se le planteen, en diversos ámbitos. A la perspectiva técnica se opone la perspectiva práctica, a los dos puntos de vistas mencionados se agrega un nuevo enfoque: estratégico, donde las actividades educativas están históricamente localizadas, las cuales tienen un lugar, sobre un trasfondo socio histórico y proyectan una visión de la clase de futuro que deseamos construir.
Resumo:
El presente trabajo se ubica en la línea de educación estocástica en lo concerniente al conocimiento profesional del profesor; se pretende, explorar los conocimientos del profesor para la enseñanza de la probabilidad en la educación media colombiana. Para ello, se utiliza un análisis del discurso sobre las ideas expuestas por diversos autores en la literatura y el enfoque cualitativo de investigación mediante un estudio de casos. Se espera ampliar el panorama referente a los conocimientos necesarios para orientar el tema de probabilidad dentro del currículo de matemáticas en la educación de nivel pre universitario.
Resumo:
En este artículo se estudia una familia de juegos infinitos y se caracteriza, en dos sentidos diferentes, cuándo se da el equilibrio. El trabajo está escrito para ser aprovechado directamente en el aula, por eso se realiza el estudio desde casos sencillos y particulares y se conduce al lector hacia una primera generalización. Obtenida la primera solución general, se discute su aplicabilidad real y se propone otra generalización, diferente a la primera, en consonancia con la realidad. Esta segunda generalización requiere de la introducción del concepto de apuesta y de la caracterización general de juego justo o equilibrado.