65 resultados para Formación de concepto
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Uno de los problemas centrales que se presentan, para abordar el tema de límite, es sin duda cuando nos enfrentamos al concepto de infinito. Generalmente el docente al enseñar el concepto de infinito utiliza metáforas didácticas basadas en conjuntos muy grandes, esto para fijar la idea de infinitud. De acuerdo con la real academia española, esto permite crear la noción de infinito en un lenguaje cotidiano, lo que lleva a generar una mala formación de este concepto, dentro de un lenguaje matemático, ya que la imprecisión del lenguaje cotidiano hace ver al concepto de infinito muy vago y se aleja de la idea matemática como unidad total (Ortiz, 1994). El interés de nuestro trabajo se centra precisamente en el diseño de actividades, donde el estudiante pueda realizar y observar un proceso infinito, a través de ejemplos geométricos donde se presente la situación límite (proceso infinito culminado), permitiendo la formación del concepto de límite.
Resumo:
En este documento indagamos sobre algunos aspectos del conocimiento didáctico que un grupo de maestros de primaria en formación inicial ponen en juego al redactar un texto cuyo propósito es iniciar a los escolares de primaria en la noción de fracción. Usamos algunas de las categorías del análisis didáctico para analizar las producciones de los futuros maestros. Los resultados destacan los conocimientos que los participantes seleccionan, como el concepto de numerador y denominador, la suma y resta de fracciones o el concepto de unidad, y el modo en que los introducen en sus propuestas.
Resumo:
En este documento, describo algunos aspectos del significado con el que usamos la expresión "análisis didáctico" en la asignatura Didáctica de la Matemática en el Bachillerato de la Universidad de Granada. En particular, introduzco el análisis didáctico como un nivel del currículo y establezco su papel en la identificación, organización y selección de los múltiples significados de un concepto matemático para efectos de diseñar, llevar a la práctica y evaluar unidades didácticas. Estas consideraciones dan lugar a algunas reflexiones sobre el papel del análisis didáctico en la formación inicial de profesores de matemáticas de secundaria.
Resumo:
En este documento, describo algunos aspectos del significado con el que usamos la expresión “análisis didáctico” en la asignatura Didáctica de la Matemática en el Bachillerato de la Universidad de Granada. En particular, introduzco el análisis didáctico como un nivel del currículo y establezco su papel en la identificación, organización y selección de los múltiples significados de un concepto matemático para efectos de diseñar, llevar a la práctica y evaluar unidades didácticas. Estas consideraciones dan lugar a algunas reflexiones sobre el papel del análisis didáctico en el diseño de planes de formación inicial de profesores de matemáticas de secundaria, en la identificación de las capacidades que califican la competencia de planificación del futuro profesor de matemáticas y en la caracterización de su conocimiento teórico, técnico y práctico.
Resumo:
En este documento, se presentarán las etapas para diseñar un Modelo Instruccional en ambientes virtuales interactivos para la enseñanza de los números Reales, que tiene en cuenta: la formación matemática de los estudiantes, sus “niveles”, sus ritmos de aprendizaje, sus obstáculos en el aprendizaje y el tiempo oficial propuesto por la institución educativa para abordar los temas. Además, se explicitan, organizan y relacionan muchos de los elementos que se conjugan, y se camuflan, en la enseñanza y el aprendizaje de los temas matemáticos. Este diseño plantea ciertos elementos para el análisis del Discurso Matemático, del discurso didáctico y toma ciertos resultados de las investigaciones en Educación Matemática (Taxonomía SOLO y la Teoría de Súperítemes entre otras) para poner en relación los niveles en el discurso didáctico con los niveles de abstracción de los estudiantes.
Resumo:
En esta réplica a la ponencia presentada por la profesora Sánchez-Matamoros, y después de unas consideraciones personales, se destaca su trayectoria investigadora centrada en analizar la comprensión del concepto de derivada abarcando los ámbitos de aprendizaje (en alumnos de secundaria) y de enseñanza (en futuros profesores de matemáticas). Se señalan sus aportaciones en el marco de la teoría APOE reflejadas en numerosas publicaciones y su aplicación al campo de la formación de profesores.
Resumo:
En este trabajo se aborda una trayectoria de investigaciones considerando el concepto de derivada. En primer lugar, se presentan investigaciones sobre el desarrollo de la comprensión del concepto y, posteriormente, investigaciones centradas en el aprendizaje de estudiantes para profesor de matemáticas de lo que se considera conocimiento adecuado para la enseñanza de dicho concepto. Esto conlleva, en cierto modo cierta transferencia del conocimiento en el sentido de que dichas investigaciones aportan información para el diseño de módulos de formación, permitiendo realizar investigaciones en el contexto de aula sobre el aprendizaje de los futuros profesores.
Resumo:
Gran parte de los estudios realizados en tomo al concepto de variable y sus diferentes usos se ha centrado en estudiantes de secundaria, bachillerato y primer semestre universitario; en todos ellos se han detectado diversas dificultades para la comprensión y manejo adecuado de tal concepto. El concepto de variable es fundamental no sólo para el aprendizaje sino también para la enseñanza del álgebra. Como marco teórico para esta investigación se utilizó la descomposición que Ursíni y Trigueros (1998) hacen del concepto de variable. En ésta se consideran una serie de aspectos que incluyen la capacidad de interpretación, simbolización y manipulación de cada uno de los 3 usos de la variable que se consideran, a saber: variable como incógnita específica, variable como número general y variables en relación funcional. Este resumen se refiere a los resultados de una investigación llevada a cabo con 74 profesores de matemáticas de secundaria a los que se les aplicó un cuestionario de 65 preguntas abiertas, dicho instrumento ya había sido diseñado y validado para realizar un estudio con estudiantes universitarios. Posteriormente se realizaron entrevistas a 6 profesores, tomando como base las respuestas dadas en el cuestionario. Se encontró que algunas de estas dificultades son similares a las que presentan los estudiantes.
Resumo:
En la primera parte de este trabajo se analizan las características generales del proceso de formación, desarrollo y generalización conceptual. Se analiza, además, la importancia de utilizar la resolución de problemas como un medio para facilitar estos procesos. En la segunda parte, a partir de una experiencia docente, se muestra el comportamiento de dos grupos de alumnos que tomaron parte en el proceso de formación, desarrollo y generalización del concepto de media numérica.
Resumo:
En este trabajo mostramos la importancia del razonamiento inductivo en la enseñanza y aprendizaje de las matemáticas en el nivel de Secundaria y, como consecuencia, la necesidad que tienen los futuros profesores de realizar tareas que fomenten el uso, y por tanto el conocimiento, de este tipo de razonamiento. Pensamos que la reflexión sobre una metodología en la que el razonamiento inductivo esté presente, se debe hacer desde la formación inicial de profesores, y más concretamente desde la didáctica de las matemáticas. Con este planteamiento, presentamos los objetivos que se pueden contemplar desde esta disciplina en la formación de profesores de matemáticas.
Resumo:
A lo largo de esta lección hemos presentado una variedad de consideraciones interconectadas, cuyo objeto común ha sido la relación del número natural con los modos de pensamiento y de actuaciones prácticas de mujeres y hombres. Nuestra reflexión se ha centrado en tres elementos fundamentales:Unos instrumentos conceptuales: sistema de los números naturales, simbólicamente estructurado; su evolución histórica y su análisis conceptual.Los modos de uso de este sistema simbólico: funciones cognitivas, así como los estudios que se han propuesto delimitar y caracterizar tales funciones como parte del pensamiento humano, su evolución y las condiciones para su aprendizaje.Los campos de actuación: fenómenos, cuestiones y problemas, en los que se pone en práctica y se trabaja con este sistema; especial importancia hemos concedido a la reflexión crítica en relación con el período escolar.
Resumo:
La Formación del Profesorado de matemáticas de Secundaria se encuentra actualmente en España sometida a una profunda revisión, no exenta de debate. El avance social, cultural, científico y económico acelerado de la sociedad española en los últimos años han rebasado ampliamente el marco de la formación del profesorado de Secundaria, diseñado hace más de un siglo. Sin embargo, los hábitos académicos e intereses particulares suponen una fuerte inercia para considerar al educador matemático como profesional autónomo. Los Profesores del Area de Didáctica de la Matemática y las Sociedades Españolas de profesores de matemáticas han debatido este tema y han aportado nuevas orientaciones. La Universidad Española debe abordar la formación inicial del Profesorado de Matemáticas en un nuevo marco y, para ello, deben tomarse decisiones adecuadas.
Resumo:
En este documento abordamos la problemática de la evaluación de programas de formación inicial de profesores de matemáticas de secundaria desde la perspectiva de la calidad. Proponemos un significado para la calidad de un plan de formación a partir de tres dimensiones: relevancia, eficacia y eficiencia. Establecemos una relación entre estas dimensiones y la noción de indicadores de calidad. Ejemplificamos esta relación para el caso de la formación inicial de profesores de matemáticas de secundaria. Presentamos un modelo de formación que se viene utilizando en las universidades de Granada, Almería y Cantabria, y proponemos algunas cuestiones a partir de las cuales es posible formular proyectos de investigación que exploren y caractericen la calidad de planes de formación inicial de profesores de matemáticas de secundaria.
Resumo:
En este trabajo precisamos el significado de los términos capacidad y competencia en el marco de un programa de formación inicial de profesores de matemáticas de secundaria. Describimos brevemente las bases de ese programa y, a continuación, presentamos y ejemplificamos un procedimiento mediante el cual los futuros profesores reflexionan en torno al aprendizaje de los escolares y usan esas nociones cuando abordan la planificación de una unidad didáctica.
Resumo:
En este artículo se presentan los resultados de un proyecto de investiga-ción sobre la comunicación entre familias y escuelas. El objetivo es co-nocer tanto los contenidos de matemáticas enseñados en la escuela, co-mo establecer puentes de diálogo entre escuelas y familias, a fin de que los estudiantes acaben mejorando su rendimiento en matemáticas. Co-menzamos con una contextualización. Luego, se presenta el estudio y la metodología utilizada. A continuación se discuten parte de los resulta-dos obtenidos, que destacan el interés de la conexión entre las familias y los centros, especialmente en los institutos. Se concluye con aportacio-nes a la formación del profesorado de matemáticas.