45 resultados para Dimensiones psicosociales
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
No es fácil experimentar, visualizar y hacer conjeturas cuando estudiamos la geometría del espacio. Con los paquetes de geometría dinámica se abren nuevas posibilidades de exploración. Aunque la mayoría de los paquetes fueron diseñados para trabajar en dos dimensiones, es posible realizar ciertas construcciones que nos permiten el estudio en el espacio. Las construcciones están basadas en el dibujo en perspectiva y en la proyección cilíndrica.
Resumo:
En esta comunicación ponemos de manifiesto la importancia del estudio de los poliedros en la Enseñanza Secundaria y su utilidad para el desarrollo y la comunicación de ideas matemáticas. Con esta intención planteamos una serie de tareas que permiten al profesor y al alumno trabajar los poliedros potenciando el lenguaje en el aula de matemáticas y las capacidades espaciales del alumno. Las tareas aquí presentadas fueron realizadas en unas Jornadas de Investigación en el aula de matemáticas organizadas por la Sociedad de Profesores de Matemáticas THALES en Granada con la participación de profesores de distintos niveles educativos.
Resumo:
Argumentamos sobre el uso de la papiroflexia como recurso didáctico en el aula de matemáticas. A través de diversas investigaciones sobre las características que un buen material didáctico debe tener se avala la importancia de la papiroflexia en la enseñanza y aprendizaje de las matemáticas. Proporcionamos unas sugerencias didácticas, que invitan a la reflexión sobre el papel de la geometría dentro del currículo. Por último, consideramos el valor de la papiroflexia como estímulo de distintas facultades intelectuales y físicas.
Resumo:
En este trabajo presentamos la papiroflexia modular como metodología para el estudio de un poliedro concreto: el cubo. Se presenta una propuesta de actividad para llevar a cabo con los estudiantes así como un análisis de los conceptos implicados en el proceso (paralelismo, simetría, medida,...). Finalmente se presentan algunas reflexiones didácticas.
Resumo:
Los profesores de matemáticas tienen necesidad de herramientas funcionales y bien elaboradas conceptualmente para el ejercicio de su profesión. Una de estas herramientas es la noción de currículo, que hemos presentado resumidamente en este capítulo y que sustentamos en una serie de dimensiones mediante las que estructurar el concepto. Pero con el concepto de currículo el profesor de matemáticas no dispone aún de toda la información necesaria para llevar a cabo sus tareas profesionales. En los próximos capítulos presentaremos nuevos conceptos que completen el dominio conceptual fundado del profesor y que, al mimo tiempo, le proporcionen nuevas herramientas funcionales para su trabajo en el aula de matemáticas.
Resumo:
En este documento abordamos la problemática de la evaluación de programas de formación inicial de profesores de matemáticas de secundaria desde la perspectiva de la calidad. Proponemos un significado para la calidad de un plan de formación a partir de tres dimensiones: relevancia, eficacia y eficiencia. Establecemos una relación entre estas dimensiones y la noción de indicadores de calidad. Ejemplificamos esta relación para el caso de la formación inicial de profesores de matemáticas de secundaria. Presentamos un modelo de formación que se viene utilizando en las universidades de Granada, Almería y Cantabria, y proponemos algunas cuestiones a partir de las cuales es posible formular proyectos de investigación que exploren y caractericen la calidad de planes de formación inicial de profesores de matemáticas de secundaria.
Resumo:
Se busca generar una discusión sobre el proceso de diseño y sistematización de una experiencia de aula en la cual se integra el Ambiente de Geometría Dinámica (AGD) Cabri 3D en el aprendizaje de la transformación de rotación en el espacio. En nuestra propuesta, encontramos investigaciones importantes en didáctica de las matemáticas que han puesto en evidencia las dificultades que los estudiantes presentan comúnmente en la exploración de propiedades de los objetos geométricos en el espacio, e incluso la representación de los mismos en él. Por lo cual, la comunicación se apoya en una aproximación instrumental que busca dar cuenta del papel mediador de Cabri 3D como un instrumento construido por el sujeto en el contexto de aprendizaje de la geometría. La propuesta se basa en el diseño de una situación didáctica en la que se integra el AGD Cabri 3D; hemos introducido una categoría que caracteriza el objeto matemático a movilizar en la secuencia de situaciones didácticas, esta categoría es la transformación de rotación en el espacio. La primera caracterización debe darse desde el reconocimiento de la Geometría transformacional como una alternativa para que los estudiantes construyan conocimiento del espacio a partir de la exploración y actuación sobre el mismo, así en la propuesta de la secuencia didáctica se tomara en consideración que la transformación de rotación posibilita la exploración de aspectos complejos tales como el sentido, la magnitud angular y la invarianza de propiedades. Esta última (la invarianza de propiedades) es uno de los aspectos más importante que se deberán distinguir en el diseño de la secuencia didáctica; en la composición de rotaciones por ejemplo, se reconoce como importante que los estudiantes tengan la capacidad de poder determinar cuáles objetos geométricos, puestos en juego en la transformación, conservan sus propiedades, así como poder determinar dentro de la rotación qué se conserva invariante. La segunda caracterización es el reconocimiento de la visualización como medio para que el estudiante interprete la información gráfica de conceptos matemáticos que se le presentan, con el fin de resolver un problema y realizar conjeturas acerca de la noción matemática que está trabajando. La pregunta central para animar la discusión en torno a nuestra comunicación es la siguiente: ¿Cómo influye el uso de Cabri 3D en el estudio del espacio y la exploración de la noción de transformación de rotación en el espacio?, ¿En la organización de la clase y los dispositivos que se deben implementar en la misma?
Resumo:
In this work we present an activity for High School students in which various mathematical concepts of plane and spatial geometry are involved. The final objective of the proposed tasks is constructing a particular polyhedron, the cube, by using a modality of origami called modular origami.
Resumo:
Tradicionalmente la geometría desde la escuela se ha enseñado desde un mismo sentido: lo bidimensional, sin considerar que las representaciones bidimensionales se hacen precisamente de objetos tridimensionales del mundo físico. Actualmente y según los lineamientos curriculares de matemáticas para una mejor percepción del espacio se requiere que el estudiante comunique y represente el espacio bidimensional a través de experiencias significativas con lo tridimensional, esta relación entre el espacio tridimensional con el plano puede desarrollarse a partir de la construcción de poliedros debido a que con estos se puede propiciar tres tipos de procesos cognitivos importantes para el desarrollo del pensamiento espacial: los procesos de visualización, los procesos de construcción y los procesos de razonamiento.
Resumo:
Este trabajo realiza, en primer lugar, un estudio de manuales de primero y segundo de Bachillerato-LOGSE, respecto al concepto de integral definida, exponiendo las cuatro dimensiones que se han considerado y un ejemplo de aplicación a un manual de 2º de Bachillerato. En la segunda parte, se hace un estudio comparativo entre los nueve manuales realizados, más representativos de Jaén y provincia, centrándonos en los significados institucionales históricos y en los conflictos semióticos.
Resumo:
La didáctica es una disciplina y campo de estudio donde se concretan muchos de los esfuerzos de la actividad educativa, donde se ponen en plata blanca los ideales, principios, métodos, criterios y herramientas que permiten al docente asumir la función de enseñar. ¿Cabe repensar la manera de aprender a enseñar, de cara a los requerimientos de la sociedad del conocimiento? ¿Cómo ayudar a que el docente desarrolle criterio y habilidad para tomar decisiones educativas que le permitan asumir la función de facilitador desde el lado en procesos educativos donde la diversidad y la complejidad son evidentes? ¿Cómo aprovechar para el mejoramiento de la actividad docente las oportunidades de tecnologías que son normales para los nativos digitales? ¿Cómo ayudar a que los futuros docentes y los docentes en servicio vivan experiencias docentes relevantes, indaguen sobre objetos de conocimiento que les llamen la atención, reflexionen sobre las distintas dimensiones de la experiencia educativa, socialicen con colegas y construyan colaborativamente nuevas ideas sobre cómo enseñar? En este documento proponemos hacer CLIC* en la didáctica y apostarle a ensayar el uso de video casos interactivos para esto.
Resumo:
Este estudio se centra en el diseño e implementación de tareas que permitan a los futuros profesores identificar el talento matemático de los alumnos, al mismo tiempo que potencian en ellos su desarrollo. El trabajo fue realizado con estudiantes de entre 7 y 11 años, que participaron en cursos extraordinarios de matemática. La tarea se basó en la teoría de situaciones de Brosseau, con algunos conceptos de combinatoria y con movimientos en el espacio. En su desarrollo se utilizó material concreto como medio facilitador hacia la abstracción. Los futuros profesores debían observar la actividad de los alumnos y registrar todos los acontencimientos que, bajo su perspectiva, intervenían el la resolución de la tarea. En los resultados mostramos la potencialidad del trabajo desarrollado, cuáles fueron las características más destacadas que se potenciaron en los alumnos y cuáles fueron las identificadas por los futuros profesores.
Resumo:
Proponer ideas lúdicas para explotar la imaginación de los estudiantes teniendo presente siempre conceptos matemáticos.
Resumo:
Esta experiencia de aula hace alusión a un proceso seguido por cuatro estudiantes para profesor dentro del espacio de formación de práctica docente, en el que todo inicia como un reto de ocho días para abordar la enseñanza de la geometría y del pensamiento espacial en estudiantes de segundo de primaria, desde la propuesta de Linda Dickson (1991), la cual centra su atención al estudio de los objetos tridimensionales,analizando sus propiedades y características físicas-visuales para proporcionar el camino hacia el aprendizaje de las representaciones bidimensionales de los mismos; ésta metodología de enseñanza enmarcada en una situación fundamental desde Brousseau (1986), llamada “viaje alrededor del mundo geométrico en ocho días” fue lo que resultó ser una experiencia inolvidable y sin duda de maravillosos aprendizajes.
Resumo:
En la presente experiencia de aula se mostrarán los aspectos que hicieron necesario trabajar con los estudiantes de grado undécimo las cónicas, en especial, la circunferencia, desde lo planteado por el Ministerio de Educación Nacional en los Estándares de Calidad y en los Lineamientos Curriculares, para luego ver la necesidad del uso del geoplano como recurso didáctico para la construcción del objeto matemático, partiendo de las dificultades que presentan los estudiantes en la construcción e identificación de las propiedades de las cónicas, especialmente de la circunferencia. Seguidamente, se expone la descripción general de la experiencia, los logros y dificultades que surgieron en el proceso de enseñanza y se finaliza con la reflexión que generó este proceso de enseñanza-aprendizaje.