11 resultados para Cerralbo, Enrique de Aguilera y Gamboa, Marqués de, 1845-1922 viajes Gipuzkoa 1891
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
A finales del siglo XVIII, en Europa el conocimiento científico se había desarrollado extraordinariamente. Surgen los nombres de Lavoisier, Ritcher, Coulomb y Celsius entre otros muchos. Se enuncian leyes en química y física; junto a ellas también florece la matemática de la mano de Euler, Lagrange, D«Alambert, Monge, por citar sólo unos cuantos. Mientras tanto, el atraso de las matemáticas españolas se debía, entre otras causas, al pobre estado en que se encontraban las universidades: aún de tipo medieval y de carácter eclesiástico. Esto lo evidencia Fray Benito Jerónimo Feijoo en la carta titulada Causas del atraso que se padece en España en orden a las ciencias naturales, y el Marqués de la Ensenada quien, en 1748, se lo expresa al rey Fernando VI. Las deficiencias de las universidades tenían que ver con la enseñanza memorística, textos anticuados e interés primordial por disciplinas como derecho, teología y filosofía en detrimento de las matemáticas y las ciencias.
Resumo:
En este documento presentamos un instrumento que hemos diseñado con el objeto de obtener información sobre la ansiedad matemática y la autoconfianza en matemáticas de alumnos que realizan el paso de la educación secundaria a la educación universitaria así como su relación con el género y la elección de titulaciones. Se trata de una entrevista con la que buscamos superar las dificultades de comunicación que se generan cuando se pregunta directamente por sus sentimientos a los adolescentes para lo que hemos recurrido a técnicas proyectivas. En este artículo mostramos además los resultados obtenidos de su aplicación, que permiten valorar su idoneidad.
Resumo:
A pesar de que los más eminentes educadores cubanos tales como Félix Varela, José de la Luz y Caballeros, José Maní, Enrique José Varona y Fidel Castro, se han pronunciado en contra de la enseñanza tradicional, pasiva y memorística, esta subsiste aún, adaptada a la época, pero manteniendo sus rasgos fundamentales. En apoyo a esta lucha surge el presente trabajo que es el resultado de un experimento realizado en la asignatura Matemática I de nivel II en las carreras de Ciencias Farmacéuticas y Microbiología; con el fin de lograr mayor conciencia e independencia en el aprendizaje. Se desarrolló siguiendo el enfoque histórico cultural y se empleo en el mismo de una novedosa técnica grupal. El trabajo contiene una descripción del método así como la forma en que se utilizó.
Resumo:
En la formación de un profesional tiene una especial significación su preparación matemática, por las potencialidades que el aprendizaje de esta ciencia brinda en el desarrollo de habilidades relacionadas con el pensamiento lógico entre otras. Un importante papel en esta dirección corresponde al desarrollo de las habilidad para obtener y demostrar proposiciones matemáticas, siendo la geometría una de las disciplinas que más puede aportar al respecto. En esta investigación se presenta una propuesta para el desarrollo de estas habilidades a través del tratamiento de un tema de la Estereometría. En la misma se abordan los fundamentos teóricos que la sustentan, los que incluyen tendencias actuales de la educación matemática. Asimismo se brindan recomendaciones para el tratamiento de las proposiciones que se estudian en el tema, basadas en la utilización de métodos activos de apropiación del conocimiento y se plantean ejemplos que ilustran cómo ponerlas en práctica. Por último, se describe la aplicación de la metodología propuesta a un grupo de estudiantes de segundo año de la carrera de Matemática-Computación de la Universidad Pedagógica “Enrique José Varona” y los resultados alcanzados por ellos en cada una de las acciones que integran la habilidad antes mencionada.
Resumo:
En este trabajo describimos los patrones y la generalización que llevan a cabo 359 estudiantes de tercero y cuarto de Secundaria en la resolución del "problema de las baldosas". Prestamos especial atención a los tipos de patrones identificados, a la forma en que los estudiantes expresan la generalización y, mediante la descripción de las estrategias inductivas, presentamos algunas características de la generalización referentes a los elementos y a los sistemas de representación utilizados.
Resumo:
Describimos la generalización que logran estudiantes de 3º y 4º de Educación Secundaria Obligatoria (ESO) en la resolución de problemas que involucran sucesiones lineales y cuadráticas. La descripción se centra en aspectos relativos al razonamiento inductivo y a las estrategias inductivas. Estas estrategias permiten describir el proceso seguido en términos de los elementos y los sistemas de representación correspondientes al contenido matemático.
Resumo:
En este artículo resumimos trabajos que abordan cuestiones relacionadas con el uso y desarrollo de pensamiento relacional en el contexto de la resolución de igualdades y sentencias numéricas. Nuestra intención es describir el estado de la cuestión e identificar líneas de investigación abiertas. Previamente detallamos el significado del término pensamiento relacional y señalamos otros términos más frecuentes en la literatura relacionados con este constructo.
Resumo:
En este trabajo describimos los patrones y la generalización que llevan a cabo 359 estudiantes de 3º y 4º de Educación Secundaria Obligatoria en la resolución del problema de las baldosas. Prestamos especial atención a los tipos de patrones identificados, a la forma en que los estudiantes expresan la generalización y, mediante la descripción de las estrategias inductivas, presentamos algunas características de la generalización referentes a los elementos y a los sistemas de representación utilizados.
Resumo:
En este trabajo describimos los patrones y la generalización que llevan a cabo 359 estudiantes de 3o y 4o de la ESO en la resolución del “problema de las baldosas”. Prestamos especial atención a los tipos de patrones identificados, a la forma en que los estudiantes expresan la generalización y, mediante la descripción de las estrategias inductivas, presentamos algunas características de la generalización referentes a los elementos y a los sistemas de representación utilizados.
Resumo:
El presente trabajo expone una experiencia de desarrollo, implementación y evaluación de un sitio Web denominado Funciones Cuadráticas. La experiencia surgió de la necesidad palpable en los centros educativos de educación secundaria en Costa Rica, de contar con una herramienta informática dirigida al profesor para la enseñanza y el aprendizaje del tema de funciones. El sitio fue desarrollado utilizando el software Dreamweaver MX 2004, se implementó inicialmente mediante una prueba piloto aplicada a un grupo de estudiantes matriculados en un curso de matemática básica en la Universidad Nacional de Costa Rica. Actualmente el sitio en su última versión se encuentra en línea en la dirección electrónica http://www.cidse.itcr.ac.cr/revistamate/AportesPe/Externos/fcuadraticas/index.htm
Resumo:
En este artículo se comenta una experiencia extraacadémica realizada por un grupo de alumnos universitarios de matemáticas, juntamente con su profesor, en el marco de la semana de las matemáticas organizada por la facultad de Matemáticas de Sevilla para conmemorar el Año Mundial de las Matemáticas (Año 2000). La citada experiencia consistió en la realización y montaje de una exposición de curvas y superficies, cuyos objetivos generales, desarrollo y conclusiones finales constituyen la base de este trabajo.