19 resultados para Cabrerizo, Mariano, 1785-1868-Memorias y recuerdos
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En esta comunicación reportamos algunos avances de una investigación en la que pretendemos que los estudiantes reconozcan variables propias de un contexto cafetero para la constitución de sus propios modelos matemáticos en un proceso de modelación. La investigación se viene adelantando con metodología cualitativa puesto que nos posibilita hacer un estudio detallado en el contexto, debido a que posee un fuerte componente descriptivo que permite a través de la recolección de datos una profunda y significativa comprensión En esta comunicación reportamos algunos avances de una investigación en la que pretendemos que los estudiantes reconozcan variables propias de un contexto cafetero para la constitución de sus propios modelos matemáticos en un proceso de modelación. La investigación se viene adelantando con metodología cualitativa puesto que nos posibilita hacer un estudio detallado en el contexto, debido a que posee un fuerte componente descriptivo que permite a través de la recolección de datos una profunda y significativa comprensión.
Resumo:
Este trabajo está orientado al estudio de las representaciones gráficas de funciones a fin de construir un módulo para docentes que contenga actividades estratégicamente diseñadas en cuanto a metodología y didáctica, de tal forma que los educandos puedan construir los conceptos de forma correcta, siendo conscientes que en el fondo hay un gran objeto matemático, con un enorme campo de aplicación: la función. Para ello, se desarrolla el trabajo de campo en la institución educativa Conrado González Mejía, la cual está ubicada en el barrio Robledo de la ciudad de Medellín.
Resumo:
En las prácticas de enseñanza es común factorizar polinomios usando un conjunto de reglas para manipular expresiones algebraicas con lápiz/ papel. Esto lleva a encasillar a la factorización a una sola representación matemática, la algebraica, y a un proceso matemático, la formulación, comparación y ejercitación de procedimientos. Por lo que el tiempo de trabajo requerido por un estudiante para expresar un polinomio en su forma factorizada con lápiz/papel no sea corto. Lo anterior puede incidir en las escasas conexiones que se dan entre la factorización y otros conceptos. Sin embargo, la integración de calculadoras simbólicas podría dar paso a mirar cómo lograr otras situaciones de enseñanza que fortalezcan las conexiones de la factorización con otros conceptos, como los ceros de un polinomio.
Resumo:
En los últimos años la probabilidad ha pasado a formar parte del currículo de los programas de matemáticas en la educación básica de una gran cantidad de países del mundo. Esta realidad plantea un reto didáctico que conlleva no sólo la elaboración de los programas para cada nivel educativo, sino su implementación didáctica en el salón de clase. Por la experiencia alcanzada en los cursos universitarios y por las investigaciones didácticas realizadas recientemente, se acepta que la probabilidad es un tema particularmente difícil.
Resumo:
Se presenta una síntesis de una experiencia de aula llevada a cabo en el Colegio Alfonso López Pumarejo IED, en el marco de la semana de práctica de la Licenciatura en Matemáticas de la Universidad Pedagógica Nacional, para la cual se utilizó como herramienta, un material nominado Tabletas Algebraicas, con el objetivo de introducir a los estudiantes en el proceso de factorización de algunos polinomios a través de la relación entre el lenguaje geométrico y el algebraico, estudiando el significado geométrico de algunos productos notables en relación con la noción de área de figuras geométricas como cuadrados y rectángulos.
Resumo:
En los últimos años y particularmente desde la aparición de los lineamientos curriculares (1998) el estudio de la educación estadística ha recobrado gran importancia para la formación de nuestros estudiantes, tanto de la educación básica como de la media y la superior. Este interés por formar una cultura estadística en los alumnos, se sustenta, desde nuestro punto de vista en tres cuestiones,igualmente importantes: 1. La necesidad social de formar ciudadanos capaces de comprender información codificada en lenguaje matemático. 2. El uso extendido de las nociones de probabilidad, azar, etc, presentes tanto en el conocimiento científico como en el conocimiento humano en general. 3. La responsabilidad de la escuela en general de ser un agente de formación para los nuevos ciudadanos. Desde estas posturas, encontramos importante señalar que la educación estadística tiene pues que abordar por lo menos los siguientes campos de formación: el análisis de datos, el tratamiento del azar y la probabilidad. En lo relativo al análisis de datos nos proponemos construir una propuesta que se diferencie de lo que hasta ahora hemos emprendido en los currículos escolares, tal es, el estudio de la estadística descriptiva en cuyo caso el énfasis en la enseñanza se centra en la ejercitación de los cálculos rutinarios resueltos con lápiz y papel, como son: gráficos, tablas, frecuencias, medidas y por último verificación de modelos. Alternativa a esta perspectiva nos proponemos utilizar el análisis exploratorio de datos enfatizando en la conceptualización sobre aspectos tales como la lectura crítica de datos, el uso de diferentes representaciones, el establecimiento de las similitudes (regularidades) y las variaciones, es decir, establecer un procedimiento de análisis que use los datos como el contexto de significado
Resumo:
A través de varias experiencias, sencillas y fáciles de desarrollar en el aula de clase, se inducirá a los estudiantes para que reconozcan la forma como varían, directa e inversamente dos magnitudes, de tal forma, que logren caracterizarla s; luego con los datos obtenidos de la práctica y con la ayuda de los programas para computador (Excel, Geogebra y TI-NspireCas) se encontrará la tendencia de los datos, acercándolos al concepto de modelación matemática.
Resumo:
Es nuestro interés en este curso discutir algunos aspectos teóricos y metodológicos relativos a la objetivación del conocimiento matemático, específicamente el relacionado con el concepto de función y con el concepto de parábola. Haremos esta discusión desde algunos resultados obtenidos de la investigación “El conocimiento matemático: desencadenador de interrelaciones en la aula de clase”. En dicho estudio empleamos una metodología a la luz del paradigma cualitativo, bajo un enfoque crítico-dialéctico y desde una investigación colaborativa. Nos apoyamos teóricamente en autores que asumen una perspectiva sociocultural de la Educación y de la Educación Matemática, por ejemplo, Bajtin (2004, 2009), Caraça (1984), Moura (2001, 2010) y Radford (2004, 2006, 2008). Este estudio nos posibilitó comprender, entre otras ideas, que los conceptos que cada alumno objetivó con respecto al objeto función y al objeto parábola no fueron únicos; como no pueden serlo el proceso de objetivación, ni los conceptos mismos.
Resumo:
En Colombia existen pocos estudios relativos al objeto de esta investigación, los que hay son referidos a la básica primaria y preescolar. El tercer estudio internacional de matemáticas y ciencias TIMSS, es la continuación de una serie de estudios en educación matemática para establecer el alcance de los logros educativos en estas áreas. Por otro lado, la Agenda Internacional de Educación Matemática ha recomendado investigar algunos tópicos asociados a estos logros; el tema de esta investigación es uno de ellos. En este caso se ha indagado sobre muchos aspectos que rodean la formulación de logros hasta la evaluación de los mismos, por que estos direccionan el aprendizaje del conocimiento matemático escolar. De ahí que se deban tener en cuenta ciertos elementos teóricos y prácticos planteados en la legislación vigente para el sistema educativo y los procesos de desarrollo y pensamiento entre otros. El trabajo parte de una teorización de la evaluación como referente para analizar la información obtenida de una muestra aleatoria tomada de 15 colegios del Departamento del Cesar donde se entrevistó también aleatoriamente a 60 profesores y 552 estudiantes entre 7° y 11° grados. Los resultados muestran una categorización de los elementos que participan en este proceso como son: los fundamentos para plantear o establecer los logros del aprendizaje, los mecanismos para evaluar, la valoración por períodos, niveles de importancia de algunos factores cuando se evalúa, aspectos que determinan la evaluación, dificultades para valorar los logros, criterios para la evaluación, tipos de evaluación aplicadas por los profesores, objeto de la evaluación y otros. Como conclusión del análisis de esta información, se desprenden una serie de recomendaciones de cómo valorar los logros del aprendizaje matemático para contribuir al mejoramiento de las prácticas evaluativas y la formulación de logros por parte de los profesores de matemáticas.
Resumo:
La evaluación es tema fundamental en la discusión sobre la educación matemática y sus referentes incorporan aspectos conceptuales, sino metodológicos, didácticos de la matemática escolar acorde con los lineamientos vigentes. Tal es el caso de la evaluación por competencias en el Examen de Estado, que ha sido objeto de análisis y críticas sobre la manera como ha interpretado y diseñado el instrumento de evaluación, en particular las preguntas que dan cuenta de las competencias interpretativa, argumentativa y propositiva en matemáticas. Sabemos que su análisis permite conceptualizar cada vez mejor la evaluación y así mismo ofrecer a la comunidad de matemática educativa otros elementos de reflexión sobre lo que nos ocupa: cualificar la educación básica y media.
Resumo:
La introducción a la clase de matemáticas de la calculadora TI 92 Plus y otros dispositivos, tales como el CBR, están generando una nueva cultura matemática, caracterizar algunos rasgos de éste fenómeno educativo en la modelación del movimiento pendular es el propósito central de la presente investigación. El trabajo de los estudiantes permitió observar en la práctica los constitutivos del marco teórico del proyecto de incorporación de nuevas tecnologías al currículo de matemáticas de Colombia, como son: mediación instrumental, representaciones ejecutables, cognición situada, solución de problemas, fluidez algorítmica y fluidez conceptual.
Resumo:
En los últimos años del siglo pasado y específicamente desde la promulgación de la Ley General de Educación, las políticas educativas en Colombia han tenido como meta la solución del problema de la baja calidad de la educación; por esta razón se han promovido cambios y se ha prestado especial interés a la evaluación como estrategia primordial para conseguir ese propósito. A través de la evaluación se pretende mejorar los niveles de aprendizaje de los estudiantes y enriquecer el desarrollo profesional de los maestros. Pero la forma de concebir la evaluación no ha cambiado mucho y la manera como se lleva a cabo, poco o nada contribuye en la formación de personas para lograr un nivel adecuado dentro de una sociedad democrática.
Resumo:
La mayoría de personas involucradas directa o indirectamente con la Educación Matemática estamos de acuerdo en que la comprensión de conceptos es el aspecto más relevante en la enseñanza y el aprendizaje de las Matemáticas. Nuestro objetivo es diseñar y aplicar una entrevista semiestructurada de carácter socrático, para describir cómo comprenden el concepto de Continuidad cuatro estudiantes de cursos de cálculo diferencial en Instituciones oficiales de la ciudad de Medellín. Para alcanzar este objetivo utilizamos la entrevista semiestructurada de carácter socrático, como instrumento principal de recolección de información, así como observaciones y materiales escritos; la entrevista a su vez se convirtió en una estrategia metodológica para mejorar la comprensión de los estudiantes, en el marco de la Teoría de Pirie y Kieren, nuestro Marco Teórico.
Resumo:
El presente trabajo se desprende de la práctica docente que se está llevando a cabo en el Centro Educativo Femenino de Antioquia (CEFA) en la ciudad de Medellín con estudiantes del grado décimo, el cual tiene como intención primordial retornar la geometría al aula de clase como una herramienta que facilita la interpretación de las ideas matemáticas y físicas, empleando la metodología de aula-taller como fundamento para alcanzar tal fin. Hasta ahora se ha logrado despertar un relevante interés en el manejo del lenguaje geométrico y una mejor interpretación de algunos conceptos como el teorema de Pitágoras y el número Pi, a partir de uso del material concreto que ayuda al estudiante a alcanzar una mejor apropiación de dichos conceptos.
Resumo:
Las Instituciones de Educación Superior,en México, reportan bajos índices de Eficiencia Terminal, hecho relacionado con la reprobación, como es el caso de la Facultad de Matemáticas de la Universidad Autónoma de Yucatán, donde se presentan altos porcentajes de reprobación en la asignatura de Álgebra. Desarrollamos un estudio cualitativo empleando la etnografía, para caracterizar el tratamiento de los contenidos, otorgado por el profesor, y el nivel de asimilación de estos, por parte de los estudiantes. Identificamos las principales representaciones semióticas empleadas por el profesor, donde concluimos que el tratamiento otorgado a los contenidos es preferentemente algebraico y conjuntista. Además, la práctica de evaluación limita a los estudiantes a reproducir los conceptos enseñados.