53 resultados para Analítica existencial
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En este artículo se describe una experiencia desarrollada con alumnos de 1º de bachillerato de la modalidad de Ciencias y Tecnología (16 y 17 años) durante el curso escolar 2009/10, con el objetivo de trabajar los problemas métricos de geometría analítica plana, utilizando las nuevas tecnologías. En concreto se utiliza el programa Geogebra, la plataforma digital de formación Moodle y la pizarra digital interactiva (PDI). El programa Geogebra nos ayuda a estudiar gráficamente los problemas, además de comprobar sus resultados analíticos; con la plataforma Moodle se consigue que el alumnado dedique de forma efectiva más tiempo al estudio mientras está fuera del centro y la PDI les permite visualizar la resolución gráfica e interactuar en su corrección. En el artículo se describe el contexto en el que se desarrolla la experiencia, el alumnado a quién va dirigida, los objetivos que se pretenden, un ejemplo de problema desarrollado en el aula y otro por los alumnos en sus casas. Finalmente se valora la experiencia y los resultados.
Resumo:
A Geometria Analítica é parte integrante dos conteúdos a serem trabalhados na Educação Básica. Além disso, os conceitos trabalhados na Educação Básica são aprofundados nos componentes curriculares dos cursos de graduação das ciências exatas tais como Engenharia, Ciências da Computação, Arquitetura, Matemática, Física, etc. Seu estudo é relevante, pois é uma ferramenta importante para o Cálculo Diferencial e Integral e é uma das principais referências em um primeiro curso de Álgebra Linear. Este trabalho tem por objetivo apresentar um estudo histórico e epistemológico das primeiras contribuições da Geometria. É importante que o professor discuta os acontecimentos históricos ao trabalhar com os conteúdos da Geometria Analítica, propor aos alunos os problemas matemáticos que originaram os conceitos da Geometria Analítica e possibilite ao aluno a construção do conhecimento e não apenas para a resolução de algoritmos.
Resumo:
El trabajo que presentamos es una experiencia desarrollada por los autores y que consiste en trabajar a diferentes niveles (secundaria, bachillerato y universidad) los conceptos que, de forma natural, aparecen al utilizar la generalización como estrategia de resolución de problemas. Con esta estrategia y resolviendo problemas de los libros de texto de bachillerato, se estudian algunas propiedades de la teoría de números. Esta experiencia permite, además, realizar un trabajo interdisciplinar física-matemáticas.
Resumo:
En este trabajo pretendemos mostrar que la presunta alternativa entre geometría sintética y geometría analítica es, en realidad, una falsa alternativa fruto de un análisis epistemológico superficial. Proponemos una forma de conectar, en la enseñanza de la geometría en secundaria, las técnicas sintéticas con las analíticas a fin de poner de manifiesto su complementariedad.
Resumo:
La razón de esta propuesta, está fundamentada en brindar una exposición simple de una prueba de un teorema de geometría analítica, utilizado por nuestros estudiantes en la educación media y la educación media superior. Mi idea nació de la iniciativa de postular una demostración a un nivel básico, de tal forma que cualquier estudiante que conozca algunos principios generales de álgebra de polinomios, geometría analítica y trigonometría, pueda comprenderla sin mayor complicación.
Resumo:
En esta investigación se estableció un modelo holístico para el proceso de enseñanza-aprendizaje de la geometría descriptiva y analítica, como dos formas de un mismo contenido, que posibilita el aumento de las vías para la apropiación del contenido de acuerdo a las características del intelecto de los estudiantes. La interacción entre ambas ramas del saber geométrico se aproveche en el proceso. En el desarrollo de la investigación fue necesario hacer un estudio lógico-histórico del desarrollo de la geometría como ciencia, de su didáctica, del contexto en que se desarrolla su enseñanza en la actualidad y sus tendencias, comprobándose que el problema de la baja solidez en el aprendizaje estaba centrado en la forma de organizar el contenido de la geometría durante el proceso, que conducía a la adquisición de un conocimiento geométrico fraccionado, y se demostró, que una de las vías para resolver el problema de investigación es precisamente la enseñanza holística de la geometría. El modelo que se aporta, que contempla un libro de texto con este enfoque, es el resultado de varios años de investigación y se está experimentando en la carrera de Arquitectura desde el año 1994 con buenos resultados.
Resumo:
En el presente trabajo se expondrán algunos temas para enriquecer el curso tradicional de geometría analítica y cálculo integral a nivel medio-superior y superior. La idea principal consiste en proponer, analizar y desarrollar una serie de suplementos a los temas usuales con el objeto, por un lado, de ilustrar algunas aplicaciones y problemas que pueden resolverse con herramientas elementales y por otro, dar un vistazo a la historia y origen de algunos conceptos, así como su evolución y utilidad a través del tiempo. Lo anterior se hará con un ejemplo concreto que, de paso, muestra como se eslabonan diversos aspectos de las matemáticas escolares sobre un problema común.
Resumo:
Este reporte trata sobre una investigación realizada en la Universidad de Camagüey que se planteó como objetivo la elaboración de un programa analítico de la asignatura álgebra lineal y geometría analítica para la carrera de Ingeniería Mecánica que permitiera elevar la eficiencia del mismo para la solución de problemas y tareas docentes por parte de los estudiantes. Los métodos empleados fueron tanto teóricos como empíricos, mediante ellos y a partir del problema considerado se constató que la concepción existente del Programa Analítico de la asignatura no es adecuado para asegurar el balance entre su nivel de generalización teórica y la solución de problemas con el consecuente desarrollo de habilidades prácticas profesionales e investigativas para garantizar el encargo social. En la investigación se demostró que la articulación teórica y práctica empleando el enfoque sistémico y la teoría de la actividad, permitió dar base teórica a la integración de los temas del álgebra lineal y geometría analítica. Además se rediseñó el programa de la asignatura y su aplicación contribuyó a elevar la eficiencia del proceso de enseñanza-aprendizaje de la misma.
Resumo:
La metodología contextual está directamente relacionada con la manera en que aprenden los estudiantes, y señala que éstos logran aprendizajes significativos cuando procesan información o conocimiento, de tal manera que lo que aprenden tiene sentido dentro de su marco de referencia, y es útil para su vida. En este trabajo se dan a conocer los resultados de una experimentación que usó la metodología contextual en un curso de geometría analítica para estudiantes de bachillerato (estudiantes de 16-17 años).
Resumo:
Son muchas las investigaciones que han resaltado la importancia de un conocimiento de la evolución histórica de un concepto matemático en la comprensión de los obstáculos y razonamientos de los estudiantes al interior del aula de clase (Posada & Villa,2006). Con base en este argumento, se presenta en este documento los resultados de una indagación histórica sobre la evolución del concepto de función cuadrática que ofrece al lector algunas pautas que le sean útiles a la hora de diseñar situaciones didácticas que involucren el concepto objeto de este estudio.
Resumo:
El presente trabajo se centra en el estudio del conocimiento sobre la orientación espacial de alumnos de 1o y 4o de ESO. En esta comunicación presentamos los resultados relativos a uno de los subbloques de contenidos abordados: la representación plana de entornos. Comparamos las respuestas de alumnos de ambos cursos de un mismo centro educativo a las mismas cuestiones. Los resultados muestran diferencias significativas entre ambos grupos y ponen de relieve cómo algunas dificultades de los alumnos (por ejemplo, respecto del concepto de plano) dependen de las características del entorno a representar.
Resumo:
En la presente experiencia de aula se mostrarán los aspectos que hicieron necesario trabajar con los estudiantes de grado undécimo las cónicas, en especial, la circunferencia, desde lo planteado por el Ministerio de Educación Nacional en los Estándares de Calidad y en los Lineamientos Curriculares, para luego ver la necesidad del uso del geoplano como recurso didáctico para la construcción del objeto matemático, partiendo de las dificultades que presentan los estudiantes en la construcción e identificación de las propiedades de las cónicas, especialmente de la circunferencia. Seguidamente, se expone la descripción general de la experiencia, los logros y dificultades que surgieron en el proceso de enseñanza y se finaliza con la reflexión que generó este proceso de enseñanza-aprendizaje.
Resumo:
En este taller los participantes, a partir del desarrollo de una tarea, identifican algunas etapas en la formulación y validación de conjeturas. La tarea se centra en la exploración de un applet relacionado con la ecuación vectorial de la recta en el plano, a partir del cual se identifican algunas propiedades geométricas del objeto geométrico y, con estas, se establecen e intentan validar generalidades. Este taller surge en el marco del proyecto de investigación “Razonamientos abductivos, inductivos y deductivos desarrollados por estudiantes del curso de Geometría Analítica al realizar una tarea relacionada con la representación de objetos geométricos en distintos sistemas coordenados” que se realiza este año en la Universidad Pedagógica Nacional.
Resumo:
El presente trabajo profudiza sobre las nociones de nota musical e intervalo musical en sentido geométrico y aritmético. El concepto aritmético de nota musical aporta a los alumnos la idea de que una misma cosa (una nota) se puede mostrar con distintas apariencias(diferentes frecuencias), el concepto de nota musical se expone a partir del movimiento de dos móviles con movimiento uniforme. A partir de estos problemas dinámicos se da un procedimiento geométrico para determinar cuatro puntos en cuaterna armónica. Esta construcción proporciona un método para dividir armónicamente el intervalo de una octava mediante las notas tercera y quinta y permite construir acordes perfectos y comprender la razón de la diferente separación entre los trastes de una guitarra.
Resumo:
¿Cómo se logran esas bonitas y suaves curvas en la pantalla de un ordenador? Parece que fluyen suavemente y no tienen ese efecto desigual que sale si dibujas un montón de puntos y los unes con segmentos rectilíneos. La razón es que el software muestrea los dibujos y usa métodos de interpolación suave. A menudo, el método de interpolación es el llamado de los splines cúbicos, que aprovecha inteligentemente ciertos conceptos matemáticos corrientes, como mostraremos a continuación.