126 resultados para Matemáticas-Enseñanza básica
Resumo:
Las clases de matemáticas no debieran tener como objetivo fundamental el aprendizaje de contenidos (definiciones, teoremas, axiomas…) que posteriormente serán aplicados a la resolución de un gran listado de ejercicios y problemas propuestos por el profesor y que justificará el aprendizaje de dichos contenidos, sino que, por el contrario, debieran partir con un problema concreto y familiar para el alumno. Una vez planteado éste y discutido por todos, estudiantes y profesor, traerá como consecuencia la obligación de resolverlo y por tanto la necesidad del aprendizaje de las técnicas que son necesarias para ello y recurrir al uso de tecnología disponible. Es muy importante destacar que durante todo el proceso el alumno hace conjeturas que irá verificando en cada paso. Se dará cuenta que algunas de las conjeturas que hizo son correctas y que otras no lo son, es decir, cometerá errores y aciertos, en función de los cuales irá cimentando su aprendizaje. Pero, por sobre todo, debe aprender que “va al colegio a equivocarse”, pero que no debe quedarse en el error, que en la discusión con sus compañeros y el profesorado encontrará la(s) solucione(s), que es probable que más de una sirva, pero que también unas son mejores que otras, que en algunos casos hay una solución óptima, en definitiva irá “aprendiendo a aprender”. Se ilustra lo anterior planteando resolver un clásico problema de construcción de cajas utilizando como herramienta de aprendizaje el software DERIVE 5.
Resumo:
Uno de los desafíos esenciales de la enseñanza de las matemáticas consiste en la utilización de métodos y medios de enseñanza que propicien en los alumnos la formación de un conocimiento científico. Se asume como referente teórico los métodos del conocimiento científico de las ciencias pedagógicas, teniendo en cuenta que cuando el conocimiento que se quiere formar es científico, tiene que crear una actividad cognoscitiva nueva, lo que hace que la enseñanza y los medios de enseñanza que utilicemos sean diferentes, particularmente por el lenguaje que tiene la matemática, que ha de ser el lenguaje científico donde, además del habitual, se da el simbólico. El objetivo del trabajo es fundamentar la utilización de las calculadoras gráficas como un medio muy importante y actual para lograr formar en los alumnos un conocimiento científico de las matemáticas, y precisar que no basta con la enseñanza expositiva para que el estudiante se forme un conocimiento científico, pues la actitud científica hay que formarla, educarla en los estudiantes. Se caracterizan los niveles del conocimiento científico de las matemáticas, el empírico y el teórico y se precisa que ambos niveles se distinguen por los métodos de enseñanza y aprendizaje, donde el empírico emplea métodos que permiten describir los hechos, y es por eso que para este nivel se recomienda la visualización con la utilización de las calculadoras gráficas, y el nivel teórico utiliza métodos para distinguir las esencias, por ejemplo el hipotético-deductivo, el lógico histórico, la ascensión de lo abstracto a lo concreto pensado, etc. El trabajo aporta como resultado los principios para la utilización de las calculadoras gráficas en las clases de matemáticas en aras de formar un conocimiento científico en la enseñanza de esta materia.
Resumo:
El presente trabajo se ubica en la línea de educación estocástica en lo concerniente al conocimiento profesional del profesor; se pretende, explorar los conocimientos del profesor para la enseñanza de la probabilidad en la educación media colombiana. Para ello, se utiliza un análisis del discurso sobre las ideas expuestas por diversos autores en la literatura y el enfoque cualitativo de investigación mediante un estudio de casos. Se espera ampliar el panorama referente a los conocimientos necesarios para orientar el tema de probabilidad dentro del currículo de matemáticas en la educación de nivel pre universitario.
Resumo:
En éste trabajo se reportan resultados de la investigación que referencia el título. El proyecto se desarrolló en estudiantes de noveno grado, de educación básica, a través de situaciones problema del contexto sociocultural y de las ciencias, bajo un diseño cualitativo y en las tres fases ; diseño y aplicación de una prueba diagnóstica, para reconocimiento de posibles dificultades de los estudiantes, intervención en el aula, para superación de las dificultades detectadas, y una prueba de contraste, para valorar el logro de las estrategias aplicadas y obtener información para mejoramiento del aprendizaje de los estudiantes. Los resultados muestran avances significativos de los estudiantes en cuanto a la comprensión de los conceptos, procedimientos y aplicaciones del pensamiento métrico.
Resumo:
El siguiente documento presenta una secuencia de actividades para trabajar la noción del concepto de limite involucrado en el pensamiento variacional en grado once, donde se toma como punto de partida el trabajo con sucesiones, permitiendo desarrollar a través del uso de diferentes tipos de sucesiones y la noción de convergencia; dicho concepto, tomado desde la definición de (Steward, Redlin, & Watson, 2001). Basado en la metodología propuesta por el grupo (DECA, 1992), la cual, no solo muestra el enseñar matemáticas, como entregar algoritmos al estudiante, sino que por el contrario, un aprendizaje desde la construcción del objeto matemático, resaltando la participación activa y critica del estudiante.
Resumo:
Los procedimientos, gráficos, operaciones y procesos en las matemáticas hacen necesaria la implementación de recursos didácticos que permitan facilitar el aprendizaje de los contenidos de ella. Por esto son indispensables en la enseñanza de las matemáticas como instrumentos de apoyo que favorecen el proceso de matematización y representación de ideas matemáticas. Esto es una gran dificultad para el niño con discapacidad visual ya que en la educación matemática hacen falta materiales didácticos adaptados lo cuales mejoren el ritmo de trabajo y rendimiento a la hora de aprender haciendo uso de una Didáctica Especial de la Matemática para ciegos que permita una adecuación de materiales pedagógicos e instrumental de trabajo para esta población.
Resumo:
En la sociedad actual la educación en valores y el fomento a la lectura, entre el alumnado de la enseñanza secundaria, tiene una singular importancia. Con este trabajo, desde el área de matemáticas y de modo interdisciplinar, hemos querido contribuir al enriquecimiento de nuestro alumnado para analizar y valorar fenómenos sociales como la diversidad cultural, la igualdad entre los sexos o la convivencia pacífica, desarrollando simultáneamente contenidos específicos de las distintas disciplinas desde las cuales puede ser analizada la lectura de El señor del cero.
Resumo:
La justificación de la presencia de la matemática en la educación secundaria puede darse a partir de perspectivas internas o externas a ella. El artículo pone de manifiesto que en las clases de matemáticas se da un cierto desequilibrio hacia los argumentos internos, lo que dificulta el acercamiento a las matemáticas de buena parte del alumnado y puede obstaculizar la adquisición de la competencia básica en la materia. En el artículo se apuesta por equilibrar la balanza acentuando una visión social y práctica de las matemáticas a partir de la introducción en el aula de contextos y situaciones donde sean necesarias.
Resumo:
La Constitución de Cádiz (1812) inicia el origen de la enseñanza secundaria en España. Dichos estudios corren parejos con el desarrollo de la burguesía como clase diferenciada, y como tal se identifican los nuevos estudios con la nueva clase social. Paralelamente al nacimiento de la secundaria, los contenidos en matemáticas de los programas, se van abriendo paso y quitando horas a los tradicionales de humanidades. El recorrido histórico termina con la trascendental Ley Moyano en 1857.
Resumo:
Inicialmente, se tratará de delimitar el campo de acción al que se refiere la palabra juego y qué tipo de juegos se propone utilizar. A continuación se considerarán las razones culturales, matemáticas, educacionales, sociológicas y psicológicas que aconsejan su incorporación en la enseñanza de las Matemáticas y algunas sugerencias que ayuden a determinar su forma de utilización en el aula. Posteriormente se realizará el análisis de algunos juegos y, para finalizar, el artículo se centrará en la experimentación en el aula y las conclusiones.
Resumo:
En este trabajo se presenta una visión particular de las matemáticas, por ejemplo ruta matemática como recurso didáctico para utilizar con los estudiantes. Esta visión no sólo se refiere observación, Sino también e interpretación, aplicación y conexión de lo que se ve. Finalmente se exponen algunas sugerencias acerca de su aplicación en las aulas.
Resumo:
En este artículo se obtiene un método de obtención de rectas tangentes a curvas polinómicas sin necesidad de conocer el cálculo de derivadas. Incluso no precisa conocimientos previos de trigonometría. El cálculo de máximos y mínimos es inmediato. El procedimiento que se presenta puede considerarse como una primera toma de contacto del estudiante, de manera inmediata, con los problemas con los que se va a encontrar posteriormente al estudiar el cálculo diferencial. Este método está pensado para incitar al alumno el interés por las derivadas.
Resumo:
En este artículo se presentan una serie de experiencias sobre cómo aprovechar el entorno a la hora de tratar ciertos contenidos del currículo. Estas actividades están organizadas en función de la proximidad al aula: trabajaremos tanto en el entorno más próximo, el patio del instituto, como en uno más alejado, el ambiente rural. Las actividades contienen aspectos interdisciplinares que tratan de mostrar la parte práctica y utilitaria de las matemáticas, trabajando especialmente los contenidos procedimentales, así como ser un material didáctico útil para la atención a la diversidad. Las actividades propuestas aparecen recogidas en un cuaderno de campo de forma que los alumnos dispongan de un material donde reflejar de una forma ordenada y precisa los resultados obtenidos después de realizar cada una de ellas.
Resumo:
La comisión permanente del comité español del año mundial de las matemáticas 2000 reflexiona sobre el significado de las Matemáticas y su situación actual en España, así como sobre lo que ha supuesto la celebración de este año.
Resumo:
El objetivo de este artículo es concienciarnos de la importancia de aprovechar los conocimientos de geometría que poseen nuestros alumnos para explicar el concepto de probabilidad. Queremos demostrar lo beneficioso que, desde un punto de vista didáctico, puede ser la unión de la geometría y la probabilidad