101 resultados para Problemas escolares infantiles
Resumo:
En este trabajo en proceso presentamos los resultados de la primera fase de nuestra investigación (análisis preliminar), que pretende reconocer a la práctica o la estrategia de la simulación que realizan los estudiantes al momento de resolver problemas de probabilidad y con ello las cuestiones en probabilidad será de gran sencillez teniendo a la herramienta de la simulación. En ello sostenemos que la práctica de la simulación enriquece al conocimiento matemático del ser humano y en particular a la probabilidad.
Resumo:
Este documento reporta los resultados de un estudio exploratorio aplicado a estudiantes de secundaria que presentan problemas de equiprobabilidad y centración en ejercicios de probabilidad basados en el razonamiento proporcional. Los problemas propuestos a los estudiantes han sido analizados por Green, Papinni, Fischbein y Gazit en investigaciones previas, de esta manera, nuestro aporte consiste en proponer una extensión a los resultados obtenidos por estos autores a partir de marco conceptual SOLO Taxonómico propuesto por Biggs y Collins (1982), que consiste en cinco niveles presentes en el ciclo de aprendizaje de una persona dentro de cada uno de los estadios de Piaget.
Resumo:
En esta comunicación se analizan dificultades y recursos que tienen los estudiantes para profesores de Educación Primaria y Secundaria al resolver problemas de Matemáticas, que se proponen como tareas y actividades básicas en un plan de formación inicial de Profesores de Matemáticas en la Educación Obligatoria, que facilitan el desarrollo de competencias profesionales útiles
Resumo:
En este trabajo se presenta un análisis de los resultados obtenidos en el examen diagnóstico de matemáticas, aplicado a los alumnos de nuevo ingreso en el CECYT “Juan de Dios Bátiz Paredes”, del I.P.N. Este análisis se realiza considerando los resultados obtenidos en la aplicación del mismo, durante un período de tres años. Los reactivos del examen están elaborados considerando los temas y clasificación especificados en el plan de estudios de la Secundaria, según el Ceneval. En habilidad matemática podemos mencionar: sucesiones numéricas, patrones numéricos, series espaciales, patrones espaciales, problemas aritméticos y problemas de razonamiento. El examen está dividido en: aritmética, álgebra y geometría. También se evalúa conceptos y operaciones y resolución de problemas. El informe destaca los reactivos con mayores y menores porcentajes de aciertos, documentando el tipo de errores más comunes que incurren y su relación que guarda con la enseñanza de las matemáticas. A partir de los resultados obtenidos se plantean acciones para que los alumnos puedan afrontar con buenos resultados los cursos de matemáticas del bachillerato.
Resumo:
El documento que se presenta a continuación, tiene como propósito fundamental realizar una propuesta frente a la enseñanza de las cónicas a un nivel introductorio, en los cursos de educación media e incluso en los programas de licenciatura de la Facultad de Ciencia y Tecnología de la Universidad Pedagógica Nacional, particularmente para ofrecer una alternativa al paso de las representaciones sintéticas y analíticas de las cónicas. La propuesta esta apoyada en una serie de actividades con el uso de herramientas computacionales (en particular el software geogebra).
Resumo:
Se reporta aquí un minicurso en el que participaron profesores de matemática de Enseñanza Media. Trabajando en un ambiente de Geometría Dinámica se aborda la resolución de problemas que involucran distintas áreas de la matemática: geometría métrica, cálculo diferencial, geometría analítica, álgebra, y que permiten poner de manifiesto la pertinencia y relevancia –así como señalar sus peculiaridades- del ambiente dinámico en la construcción del conocimiento matemático por parte de los participantes y a su vez discutir su papel en el trabajo con estudiantes.
Resumo:
Se presenta el manejo de la prensa como medio didáctico para lograr que los alumnos vean a la Matemática inmersa en su vida cotidiana, despertando en ellos su interés en la materia, logrando transformar noticias, comentarios, anuncios, etc., de la prensa, en problemas para aplicar en ellos el quehacer matemático: cómo enfrentarlos, la búsqueda de vías de solución y la resolución exitosa de los mismos. Utilizar los medios de información del ámbito social como recurso didáctico nos permitirá cambiar esquemas tradicionales de la enseñanza por métodos y técnicas de participación activa bajo un enfoque constructivista, el objetivo del trabajo es: Ofrecer indicaciones metodológicas para propiciar en los estudiantes la utilización de modelos matemáticos en situaciones prácticas, a través del uso de la prensa.
Resumo:
Este reporte trata de una investigación cooperativa cuyo tema es la comparación de la enseñanza de la geometría en Chile y en Francia (proyecto ECOS-CONYCIT). Después de definir nuestra metodología por zooms sucesivos, presentamos las mayores diferencias que encontramos entre los dos países. Estas diferencias conciernen a los ámbitos siguientes: la concepción de la geometría, los aspectos de la actividad matemática puestos en evidencia, la organización del aprendizaje, la extensión de los programas, la importancia dada a las aplicaciones de matemáticas y a la modelación. Los trabajos de C.Houdement y A.Kuzniak sobre los paradigmas geométricos nos permiten analizar las concepciones de la geometría.
Resumo:
Es urgente tratar los contenidos matemáticos de forma que docentes y estudiantes sientan la necesidad de aprender matemáticas para poder dar solución a los múltiples problemas que a nivel mundial plantean servicios tales como salud, distribución, energía, conservación del agua, etc, así como la industria moderna; en calidad, competitividad y automatización. Corresponde a los matemáticos educativos demostrar que es necesario ampliar el horizonte teórico para dar solución a problemas complejos y hacer uso de modernas técnicas computacionales para realizar los cálculos. La idea es a partir de la necesidad, buscar el respaldo técnico y teórico que permitan cumplir el objetivo de dar solución al problema. De esta forma el objetivo del estudiante lo motiva a aprender.
Resumo:
Asumiendo que la evaluación debe estar integrada en el proceso de enseñanza-aprendizaje, estamos desarrollando una investigación con profesores de matemáticas de secundaria en Bogotá (Colombia), para analizar sus concepciones y prácticas acerca de la evaluación sobre la resolución de problemas en matemáticas. Partimos de un cuestionario que indaga sobre la importancia que se da a diferentes aspectos cognitivos y afectivos, y al hecho de evaluarlos. Se identifica que en la evaluación de la resolución de problemas se continúa priorizando la evaluación de aspectos del dominio cognitivo, sobre el afectivo. Y en el dominio cognitivo se hace un mayor énfasis sobre los aspectos propios del conocimiento matemático que sobre las estrategias heurísticas.
Resumo:
Las clases de matemáticas no debieran tener como objetivo fundamental el aprendizaje de contenidos (definiciones, teoremas, axiomas…) que posteriormente serán aplicados a la resolución de un gran listado de ejercicios y problemas propuestos por el profesor y que justificará el aprendizaje de dichos contenidos, sino que, por el contrario, debieran partir con un problema concreto y familiar para el alumno. Una vez planteado éste y discutido por todos, estudiantes y profesor, traerá como consecuencia la obligación de resolverlo y por tanto la necesidad del aprendizaje de las técnicas que son necesarias para ello y recurrir al uso de tecnología disponible. Es muy importante destacar que durante todo el proceso el alumno hace conjeturas que irá verificando en cada paso. Se dará cuenta que algunas de las conjeturas que hizo son correctas y que otras no lo son, es decir, cometerá errores y aciertos, en función de los cuales irá cimentando su aprendizaje. Pero, por sobre todo, debe aprender que “va al colegio a equivocarse”, pero que no debe quedarse en el error, que en la discusión con sus compañeros y el profesorado encontrará la(s) solucione(s), que es probable que más de una sirva, pero que también unas son mejores que otras, que en algunos casos hay una solución óptima, en definitiva irá “aprendiendo a aprender”. Se ilustra lo anterior planteando resolver un clásico problema de construcción de cajas utilizando como herramienta de aprendizaje el software DERIVE 5.
Resumo:
En éste trabajo se reportan resultados de la investigación que referencia el título. El proyecto se desarrolló en estudiantes de noveno grado, de educación básica, a través de situaciones problema del contexto sociocultural y de las ciencias, bajo un diseño cualitativo y en las tres fases ; diseño y aplicación de una prueba diagnóstica, para reconocimiento de posibles dificultades de los estudiantes, intervención en el aula, para superación de las dificultades detectadas, y una prueba de contraste, para valorar el logro de las estrategias aplicadas y obtener información para mejoramiento del aprendizaje de los estudiantes. Los resultados muestran avances significativos de los estudiantes en cuanto a la comprensión de los conceptos, procedimientos y aplicaciones del pensamiento métrico.
Resumo:
En años recientes, un cuerpo creciente de investigaciones en didáctica de las matemáticas han identificado algunas dificultades en relación con la enseñanza y aprendizaje de contenidos temáticos, procesos y contextos relacionados con el pensamiento espacial y sistemas geométricos, siendo comúnmente atribuidas a causas de orden epistemológico, cognitivo, curricular y didáctico. En este marco se genera la necesidad de integrar recursos, específicamente materiales manipulativos, al currículo y a las prácticas escolares, que permitan fortalecer en los estudiantes los conocimientos obtenidos para resolver algunos problemas de su entorno escolar y cotidiano.
Resumo:
En este trabajo presentamos los resultados de un cuestionario formado por cuatro problemas abiertos, a través de los cuales evaluamos la comprensión de la idea de media aritmética. Analizamos los componentes del significado que asigna una muestra de 53 alumnos de educación secundaria a este concepto, y, en particular, su comprensión de propiedades numéricas de este concepto.
Resumo:
En este artículo se obtiene un método de obtención de rectas tangentes a curvas polinómicas sin necesidad de conocer el cálculo de derivadas. Incluso no precisa conocimientos previos de trigonometría. El cálculo de máximos y mínimos es inmediato. El procedimiento que se presenta puede considerarse como una primera toma de contacto del estudiante, de manera inmediata, con los problemas con los que se va a encontrar posteriormente al estudiar el cálculo diferencial. Este método está pensado para incitar al alumno el interés por las derivadas.